ﻻ يوجد ملخص باللغة العربية
Although the new era of high precision cosmology of the cosmic microwave background (CMB) radiation improves our knowledge to understand the infant as well as the presentday Universe, it also leads us to question the main assumption of the exact isotropy of the CMB. There are two pieces of observational evidence that hint towards there being no exact isotropy. These are first the existence of small anisotropy deviations from isotropy of the CMB radiation and second, the presence of large angle anomalies, although the existence of these anomalies is currently a huge matter of debate. These hints are particularly important since isotropy is one of the two main postulates of the Copernican principle on which the FRW models are built. This almost isotropic CMB radiation implies that the universe is almost a FRW universe, as is proved by previous studies. Assuming the matter component forms the deviations from isotropy in the CMB density fluctuations when matter and radiation decouples, we here attempt to find possible constraints on the FRW type scale and Hubble parameter by using the Bianchi type I (BI) anisotropic model which is asymptotically equivalent to the standard FRW. To obtain constraints on such an anisotropic model, we derive average and late-time shear values that come from the anisotropy upper limits of the recent Planck data based on a model independent shear parameter of Maartens et al. (1995a,b) and from the theoretical consistency relation. These constraints lead us to obtain a BI model which becomes an almost-FRW model in time, and which is consistent with the latest observational data of the CMB.
In this work we explore an alternative phenomenological model to Chaplygin gas proposed by H. Hova et. al., consisting on a modification of a perfect fluid, to explain the dynamics of dark matter and dark energy at cosmological scales immerse in a fl
We consider an alternative to inflation for the generation of superhorizon perturbations in the universe in which the speed of sound is faster than the speed of light. We label such cosmologies, first proposed by Armendariz-Picon, {it tachyacoustic},
Motivated by two seminal models proposed to explain the Universe acceleration, this paper is devoted to study a hybrid model which is constructed through a generalized Chaplygin gas with the addition of a bulk viscosity. We call the model a Viscous G
In this work, we explore some cosmological implications of the model proposed by M. Visser in 1998. In his approach, Visser intends to take in account mass for the graviton by means of an additional bimetric tensor in the Einsteins field equations. O
In this work, we achieve the determination of the cosmic curvature $Omega_K$ in a cosmological model-independent way, by using the Hubble parameter measurements $H(z)$ and type Ia supernovae (SNe Ia). In our analysis, two nonlinear interpolating tool