ﻻ يوجد ملخص باللغة العربية
In this paper we describe the profinite completion of the free solvable group on m generators of solvability length r>1. Then, we show that for m=r=2, the free metabelian group on two generators does not have the Congruence Subgroup Property.
The congruence subgroup problem for a finitely generated group $Gamma$ asks whether the map $hat{Autleft(Gammaright)}to Aut(hat{Gamma})$ is injective, or more generally, what is its kernel $Cleft(Gammaright)$? Here $hat{X}$ denotes the profinite comp
The congruence subgroup problem for a finitely generated group $Gamma$ asks whether $widehat{Autleft(Gammaright)}to Aut(hat{Gamma})$ is injective, or more generally, what is its kernel $Cleft(Gammaright)$? Here $hat{X}$ denotes the profinite completi
The congruence subgroup problem for a finitely generated group $Gamma$ and $Gleq Aut(Gamma)$ asks whether the map $hat{G}to Aut(hat{Gamma})$ is injective, or more generally, what is its kernel $Cleft(G,Gammaright)$? Here $hat{X}$ denotes the profinit
The goal of this paper is to give a group-theoretic proof of the congruence subgroup property for $Aut(F_2)$, the group of automorphisms of a free group on two generators. This result was first proved by Asada using techniques from anabelian geometry
We show the connection between the relative Dehn function of a finitely generated metabelian group and the distortion function of a corresponding subgroup in the wreath product of two free abelian groups of finite rank. Further, we show that if a fin