ﻻ يوجد ملخص باللغة العربية
The extensive search for deviations from Gaussianity in cosmic microwave background radiation (CMB) data is very important due to the information about the very early moments of the universe encoded there. Recent analyses from Planck CMB data do not exclude the presence of non-Gaussianity of small amplitude, although they are consistent with the Gaussian hypothesis. The use of different techniques is essential to provide information about types and amplitudes of non-Gaussianities in the CMB data. In particular, we find interesting to construct an estimator based upon the combination of two powerful statistical tools that appears to be sensitive enough to detect tiny deviations from Gaussianity in CMB maps. This estimator combines the Minkowski functionals with a Neural Network, maximizing a tool widely used to study non-Gaussian signals with a reinforcement of another tool designed to identify patterns in a data set. We test our estimator by analyzing simulated CMB maps contaminated with different amounts of local primordial non-Gaussianity quantified by the dimensionless parameter fNL. We apply it to these sets of CMB maps and find gtrsim 98% of chance of positive detection, even for small intensity local non-Gaussianity like fNL = 38 +/- 18, the current limit from Planck data for large angular scales. Additionally, we test the suitability to distinguish between primary and secondary non-Gaussianities and find out that our method successfully classifies ~ 95% of the tested maps. Furthermore, we analyze the foreground-cleaned Planck maps obtaining constraints for non-Gaussianity at large-angles that are in good agreement with recent constraints. Finally, we also test the robustness of our estimator including cut-sky masks and realistic noise maps measured by Planck, obtaining successful results as well.
We present an upgraded combined estimator, based on Minkowski Functionals and Neural Networks, with excellent performance in detecting primordial non-Gaussianity in simulated maps that also contain a weighted mixture of Galactic contaminations, besid
The statistical properties of the temperature anisotropies and polarization of the of cosmic microwave background (CMB) radiation offer a powerful probe of the physics of the early universe. In recent works a statistical procedure based upon the calc
[Abridged.] It is conceivable that no single statistical estimator can be sensitive to all forms and levels of non-Gaussianity that may be present in observed CMB data. In recent works a statistical procedure based upon the calculation of the skewnes
The identification of non-Gaussian signatures in cosmic microwave background (CMB) temperature maps is one of the main cosmological challenges today. We propose and investigate altenative methods to analyse CMB maps. Using the technique of constraine
The Planck nominal mission cosmic microwave background (CMB) maps yield unprecedented constraints on primordial non-Gaussianity (NG). Using three optimal bispectrum estimators, separable template-fitting (KSW), binned, and modal, we obtain consistent