ﻻ يوجد ملخص باللغة العربية
There is little information from independent sources in the public domain about mobile malware infection rates. The only previous independent estimate (0.0009%) [12], was based on indirect measurements obtained from domain name resolution traces. In this paper, we present the first independent study of malware infection rates and associated risk factors using data collected directly from over 55,000 Android devices. We find that the malware infection rates in Android devices estimated using two malware datasets (0.28% and 0.26%), though small, are significantly higher than the previous independent estimate. Using our datasets, we investigate how indicators extracted inexpensively from the devices correlate with malware infection. Based on the hypothesis that some application stores have a greater density of malicious applications and that advertising within applications and cross-promotional deals may act as infection vectors, we investigate whether the set of applications used on a device can serve as an indicator for infection of that device. Our analysis indicates that this alone is not an accurate indicator for pinpointing infection. However, it is a very inexpensive but surprisingly useful way for significantly narrowing down the pool of devices on which expensive monitoring and analysis mechanisms must be deployed. Using our two malware datasets we show that this indicator performs 4.8 and 4.6 times (respectively) better at identifying infected devices than the baseline of random checks. Such indicators can be used, for example, in the search for new or previously undetected malware. It is therefore a technique that can complement standard malware scanning by anti-malware tools. Our analysis also demonstrates a marginally significant difference in battery use between infected and clean devices.
As the COVID-19 pandemic emerged in early 2020, a number of malicious actors have started capitalizing the topic. Although a few media reports mentioned the existence of coronavirus-themed mobile malware, the research community lacks the understandin
Currently, Android malware detection is mostly performed on server side against the increasing number of malware. Powerful computing resource provides more exhaustive protection for app markets than maintaining detection by a single user. However, ap
A wide range of approaches have been applied to manage the spread of global pandemic events such as COVID-19, which have met with varying degrees of success. Given the large-scale social and economic impact coupled with the increasing time span of th
Malware is a piece of software that was written with the intent of doing harm to data, devices, or people. Since a number of new malware variants can be generated by reusing codes, malware attacks can be easily launched and thus become common in rece
With the proliferation of Android malware, the demand for an effective and efficient malware detection system is on the rise. The existing device-end learning based solutions tend to extract limited syntax features (e.g., permissions and API calls) t