ﻻ يوجد ملخص باللغة العربية
This Letter is based on the $kappa$-Dirac equation, derived from the $kappa$-Poincar{e}-Hopf algebra. It is shown that the $kappa$-Dirac equation preserves parity while breaks charge conjugation and time reversal symmetries. Introducing the Dirac oscillator prescription, $mathbf{p}tomathbf{p}-imomegabetamathbf{r}$, in the $kappa$-Dirac equation, one obtains the $kappa$-Dirac oscillator. Using a decomposition in terms of spin angular functions, one achieves the deformed radial equations, with the associated deformed energy eigenvalues and eigenfunctions. The deformation parameter breaks the infinite degeneracy of the Dirac oscillator. In the case where $varepsilon=0$, one recovers the energy eigenvalues and eigenfunctions of the Dirac oscillator.
We obtain exact solutions of the (2+1) dimensional Dirac oscillator in a homogeneous magnetic field within the Anti-Snyder modified uncertainty relation characterized by a momentum cut-off ($pleq p_{text{max}}=1/ sqrt{beta}$). In ordinary quantum mec
We return to the description of the damped harmonic oscillator by means of a closed quantum theory with a general assessment of previous works, in particular the Bateman-Caldirola-Kanai model and a new model recently proposed by one of the authors. W
The Dirac equation with both scalar and vector couplings describing the dynamics of a two-dimensional Dirac oscillator in the cosmic string spacetime is considered. We derive the Dirac-Pauli equation and solve it in the limit of the spin and the pseu
We present a new construction for the Hodge operator for differential manifolds based on a Fourier (Berezin)-integral representation. We find a simple formula for the Hodge dual of the wedge product of differential forms, using the (Berezin)-convolut
We revisit the Virasoro constraints and explore the relation to the Hirota bilinear equations. We furthermore investigate and provide the solution to non-homogeneous Virasoro constraints, namely those coming from matrix models whose domain of integra