ﻻ يوجد ملخص باللغة العربية
Using three magnified Type Ia supernovae (SNe Ia) detected behind CLASH clusters, we perform a first pilot study to see whether standardizable candles can be used to calibrate cluster mass maps created from strong lensing observations. Such calibrations will be crucial when next generation HST cluster surveys (e.g. FRONTIER) provide magnification maps that will, in turn, form the basis for the exploration of the high redshift Universe. We classify SNe using combined photometric and spectroscopic observations, finding two of the three to be clearly of type SN Ia and the third probable. The SNe exhibit significant amplification, up to a factor of 1.7 at $sim5sigma$ significance (SN-L2). We conducted this as a blind study to avoid fine tuning of parameters, finding a mean amplification difference between SNe and the cluster lensing models of $0.09 pm 0.09^{stat} pm 0.05^{sys}$ mag. This impressive agreement suggests no tension between cluster mass models and high redshift standardized SNe Ia. However, the measured statistical dispersion of $sigma_{mu}=0.21$ mag appeared large compared to the dispersion expected based on statistical uncertainties ($0.14$). Further work with the supernova and cluster lensing models, post unblinding, reduced the measured dispersion to $sigma_{mu}=0.12$. An explicit choice should thus be made as to whether SNe are used unblinded to improve the model, or blinded to test the model. As the lensed SN samples grow larger, this technique will allow improved constraints on assumptions regarding e.g. the structure of the dark matter halo.
Recently, there have been two landmark discoveries of gravitationally lensed supernovae: the first multiply-imaged SN, Refsdal, and the first Type Ia SN resolved into multiple images, SN iPTF16geu. Fitting the multiple light curves of such objects ca
Type Ia supernova cosmology depends on the ability to fit and standardize observations of supernova magnitudes with an empirical model. We present here a series of new models of Type Ia Supernova spectral time series that capture a greater amount of
Type Ia supernovae (SNe Ia) that are multiply imaged by gravitational lensing can extend the SN Ia Hubble diagram to very high redshifts $(zgtrsim 2)$, probe potential SN Ia evolution, and deliver high-precision constraints on $H_0$, $w$, and $Omega_
Empirically, Type Ia supernovae are the most useful, precise, and mature tools for determining astronomical distances. Acting as calibrated candles they revealed the presence of dark energy and are being used to measure its properties. However, the n
To use strongly lensed Type Ia supernovae (LSNe Ia) for cosmology, a time-delay measurement between the multiple supernova (SN) images is necessary. The sharp rise and decline of SN Ia light curves make them promising for measuring time delays, but m