ﻻ يوجد ملخص باللغة العربية
The temperature in the crust of an accreting neutron star, which comprises its outermost kilometer, is set by heating from nuclear reactions at large densities, neutrino cooling, and heat transport from the interior. The heated crust has been thought to affect observable phenomena at shallower depths, such as thermonuclear bursts in the accreted envelope. Here we report that cycles of electron capture and its inverse, $beta^-$ decay, involving neutron-rich nuclei at a typical depth of about 150 m, cool the outer neutron star crust by emitting neutrinos while also thermally decoupling the surface layers from the deeper crust. This Urca mechanism has been studied in the context of white dwarfs and Type Ia supernovae, but hitherto was not considered in neutron stars, because previous models computed the crust reactions using a zero-temperature approximation and assumed that only a single nuclear species was present at any given depth. This thermal decoupling means that X-ray bursts and other surface phenomena are largely independent of the strength of deep crustal heating. The unexpectedly short recurrence times, of the order of years, observed for very energetic thermonuclear superbursts are therefore not an indicator of a hot crust, but may point instead to an unknown local heating mechanism near the neutron star surface.
The interpretation of observations of cooling neutron star crusts in quasi-persistent X-ray transients is affected by predictions of the strength of neutrino cooling via crust Urca processes. The strength of crust Urca neutrino cooling depends sensit
The uncertainties in neutron star (NS) radii and crust properties due to our limited knowledge of the equation of state (EOS) are quantitatively analysed. We first demonstrate the importance of a unified microscopic description for the different bary
The minimal cooling paradigm for neutron star cooling assumes that enhanced cooling due to neutrino emission from any direct Urca process, due either to nucleons or to exotica such as hyperons, Bose condensates, or deconfined quarks, does not occur.
An 8.8 solar mass electron-capture supernova (SN) was simulated in spherical symmetry consistently from collapse through explosion to nearly complete deleptonization of the forming neutron star. The evolution time of about 9 s is short because of nuc
We investigate the nuclear pasta phases in neutron star crusts by conducting a large number of three-dimensional Hartree-Fock+BCS calculations at densities leading to the crust-core transition. We survey the shape parameter space of pasta at constant