ﻻ يوجد ملخص باللغة العربية
We report differential photometric observations and radial-velocity measurements of the detached, 1.69-day period, double-lined eclipsing binary AQ Ser. Accurate masses and radii for the components are determined to better than 1.8% and 1.1%, respectively, and are M1 = 1.417 +/- 0.021 MSun, M2 = 1.346 +/- 0.024 MSun, R1 = 2.451 +/- 0.027 RSun, and R2 = 2.281 +/- 0.014 RSun. The temperatures are 6340 +/- 100 K (spectral type F6) and 6430 +/- 100 K (F5), respectively. Both stars are considerably evolved, such that predictions from stellar evolution theory are particularly sensitive to the degree of extra mixing above the convective core (overshoot). The component masses are different enough to exclude a location in the H-R diagram past the point of central hydrogen exhaustion, which implies the need for extra mixing. Moreover, we find that current main-sequence models are unable to match the observed properties at a single age even when allowing the unknown metallicity, mixing length parameter, and convective overshooting parameter to vary freely and independently for the two components. The age of the more massive star appears systematically younger. AQ Ser and other similarly evolved eclipsing binaries showing the same discrepancy highlight an outstanding and largely overlooked problem with the description of overshooting in current stellar theory.
Classical Cepheids are powerful probes of both stellar evolution and near-field cosmology thanks to their high luminosities, pulsations, and that they follow the Leavitt (Period-Luminosity) Law. However, there still exist a number of questions regard
We report extensive photometric and spectroscopic observations of the 6.1-day period, G+M-type detached double-lined eclipsing binary V530 Ori, an important new benchmark system for testing stellar evolution models for low-mass stars. We determine ac
Convective core overshooting extends the main-sequence lifetime of a star. Evolutionary tracks computed with overshooting are quite different from those that use the classical Schwarzschild criterion, which leads to rather different predictions for t
Many current stellar evolution models assume some dependence of the strength of convective core overshooting on mass for stars more massive than 1.1-1.2 solar masses, but the adopted shapes for that relation have remained somewhat arbitrary for lack
As part of a larger program aimed at better quantifying the uncertainties in stellar computations, we attempt to calibrate the extent of convective overshooting in low to intermediate mass stars by means of eclipsing binary systems. We model 12 such