ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysing radial flow features in p-Pb and p-p collisions at several TeV by studying identified particle production in EPOS3

128   0   0.0 ( 0 )
 نشر من قبل Klaus Werner
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Experimental transverse momentum spectra of identified particles in p-Pb collisions at 5.02 TeV show many similarities to the corresponding Pb-Pb results, the latter ones usually being interpreted in term of hydrodynamic flow. We analyse these data using EPOS3, an event generator based on a 3D+1 viscous hydrodynamical evolution starting from flux tube initial conditions, which are generated in the Gribov-Regge multiple scattering framework. An individual scattering is referred to as Pomeron, identified with a parton ladder, eventually showing up as flux tubes (or strings). Each parton ladder is composed of a pQCD hard process, plus initial and final state linear parton emission. Nonlinear effects are considered by using saturation scales $Q_{s}$, depending on the energy and the number of participants connected to the Pomeron in question. We compute transverse momentum ($p_{t}$) spectra of pions, kaons, protons, lambdas, and $Xi$ baryons in p-Pb and p-p scattering, compared to experimental data and many other models. In this way we show in a quantitative fashion that p-Pb data (and even p-p ones) show the typical ``flow effect of enhanced particle production at intermediate $p_{t}$ values, more and more visible with increasing hadron mass.



قيم البحث

اقرأ أيضاً

Using the EPOS3 model with UrQMD to describe the hadronic phase, we study the production of short-lived hadronic resonances and the modification of their yields and $p_{T}$ spectra in p-Pb collisions at $sqrt{s_{NN}}$ = 5.02 TeV. High-multiplicity p- Pb collisions exhibit similar behavior to mid-peripheral Pb-Pb collisions at LHC energies, and we find indications of a short-lived hadronic phase in p-Pb collisions that can modify resonance yields and $p_{T}$ spectra through scattering processes. The evolution of resonance production is investigated as a function of the system size, which is related to the lifetime of the hadronic phase, in order to study the onset of collective effects in p-Pb collisions. We also study hadron production separately in the core and corona parts of these collisions, and explore how this division affects the total particle yields as the system size increases.
In this paper, production of ${rm W}^{pm}$ and ${rm Z}^{0}$ vector bosons in p-p, p-Pb (Pb-p), and Pb-Pb collisions at $sqrt{s_{rm NN}}=5.02$ TeV is dynamically simulated with a parton and hadron cascade model PACIAE. ALICE data of ${rm Z}^{0}$ produ ction is found to be reproduced fairly well. A prediction for ${rm W}^{pm}$ production is given in the same collision systems, at the same energy and at the same energy. An interesting isospin-effect is observed in the sign-change of $mu^{pm}$ charge asymmetry in pp, pn, np, and nn collisions and in minimum bias p-Pb, Pb-p and Pb-Pb collisions at $sqrt{s_{rm NN}}=5.02$ TeV, respectively.
In a framework of a semi-analytic model with longitudinally extended strings of fluctuating end-points, we demonstrate that the rapidity spectra and two-particle correlations in collisions of Pb-Pb, p-Pb, and p-p at the energies of the Large Hadron C ollider can be universally reproduced. In our approach, the strings are pulled by wounded constituents appearing in the Glauber modeling at the partonic level. The obtained rapidity profile for the emission of hadrons from a string yields bounds for the distributions of the end-point fluctuations. Then, limits for the two-particle-correlations in pseudorapidity can be obtained. Our results are favorably compared to recent experimental data from the ATLAS Collaboration.
It has been debated for decades whether hadrons emerging from p+p collisions exhibit collective expansion. The signal of the collective motion in p+p collisions is not as clear/clean as in heavy-ion collisions because of the low multiplicity and larg e fluctuation in p+p collisions. Tsallis Blast-Wave (TBW) model is a thermodynamic approach, introduced to handle the overwhelming correlation and fluctuation in the hadronic processes. We have systematically studied the identified particle spectra in p+p collisions from RHIC to LHC using TBW and found no appreciable radial flow in p+p collisions below $sqrt{s}=900$ GeV. At LHC higher energy of 7 TeV in p+p collisions, the radial flow velocity achieves an average value of $<beta >= 0.320pm0.005$. This flow velocity is comparable to that in peripheral (40-60%) Au+Au collisions at RHIC. Breaking of the identified particle spectra $m_T$ scaling was also observed at LHC from a model independent test.
Azimuthal particle correlations have been extensively studied in the past at various collider energies in p-p, p-A, and A-A collisions. Hadron-correlation measurements in heavy-ion collisions have mainly focused on studies of collective (flow) effect s at low-$p_T$ and parton energy loss via jet quenching in the high-$p_T$ regime. This was usually done without event-by-event particle identification. In this paper, we present two-particle correlations with identified trigger hadrons and identified associated hadrons at mid-rapidity in Monte Carlo generated events. The primary purpose of this study was to investigate the effect of quantum number conservation and the flavour balance during parton fragmentation and hadronization. The simulated p-p events were generated with PYTHIA 6.4 with the Perugia-0 tune at $sqrt{s}=7$ TeV. HIJING was used to generate $0-10%$ central Pb-Pb events at $sqrt{s_{rm NN}}=2.76$ TeV. We found that the extracted identified associated hadron spectra for charged pion, kaon, and proton show identified trigger-hadron dependent splitting. Moreover, the identified trigger-hadron dependent correlation functions vary in different $p_T$ bins, which may show the presence of collective/nuclear effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا