ترغب بنشر مسار تعليمي؟ اضغط هنا

Production of Nickel-56 in black hole-neutron star merger accretion disk outflows

491   0   0.0 ( 0 )
 نشر من قبل Rebecca Surman
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The likely outcome of a compact object merger event is a central black hole surrounded by a rapidly accreting torus of debris. This disk of debris is a rich source of element synthesis, the outcome of which is needed to predict electromagnetic counterparts of individual events and to understand the contribution of mergers to galactic chemical evolution. Here we study disk outflow nucleosynthesis in the context of a two-dimensional, time-dependent black hole-neutron star merger accretion disk model. We use two time snapshots from this model to examine the impact of the evolution of the neutrino fluxes from the disk on the element synthesis. While the neutrino fluxes from the early-time disk snapshot appear to favor neutron-rich outflows, by the late-time snapshot the situation is reversed. As a result we find copious production of Nickel-56 in the outflows.



قيم البحث

اقرأ أيضاً

We investigate mass ejection from accretion disks formed in mergers of black holes (BHs) and neutron stars (NSs). The third observing run of the LIGO/Virgo interferometers provided BH-NS candidate events that yielded no electromagnetic (EM) counterpa rts. The broad range of disk configurations expected from BH-NS mergers motivates a thorough exploration of parameter space to improve EM signal predictions. Here we conduct 27 high-resolution, axisymmetric, long-term hydrodynamic simulations of the viscous evolution of BH accretion disks that include neutrino emission/absorption effects and post-processing with a nuclear reaction network. In the absence of magnetic fields, these simulations provide a lower-limit to the fraction of the initial disk mass ejected. We find a nearly linear inverse dependence of this fraction on disk compactness (BH mass over initial disk radius). The dependence is related to the fraction of the disk mass accreted before the outflow is launched, which depends on the disk position relative to the innermost stable circular orbit. We also characterize a trend of decreasing ejected fraction and decreasing lanthanide/actinide content with increasing disk mass at fixed BH mass. This trend results from a longer time to reach weak freezout and an increasingly dominant role of neutrino absorption at higher disk masses. We estimate the radioactive luminosity from the disk outflow alone available to power kilonovae over the range of configurations studied, finding a spread of two orders of magnitude. For most of the BH-NS parameter space, the disk outflow contribution is well below the kilonova mass upper limits for GW190814.
The rapid-neutron-capture (r) process is responsible for synthesizing many of the heavy elements observed in both the solar system and Galactic metal-poor halo stars. Simulations of r-process nucleosynthesis can reproduce abundances derived from obse rvations with varying success, but so far fail to account for the observed over-enhancement of actinides, present in about 30% of r-process-enhanced stars. In this work, we investigate actinide production in the dynamical ejecta of a neutron star merger and explore if varying levels of neutron richness can reproduce the actinide boost. We also investigate the sensitivity of actinide production on nuclear physics properties: fission distribution, beta-decay, and mass model. For most cases, the actinides are over-produced in our models if the initial conditions are sufficiently neutron-rich for fission cycling. We find that actinide production can be so robust in the dynamical ejecta that an additional lanthanide-rich, actinide-poor component is necessary in order to match observations of actinide-boost stars. We present a simple actinide-dilution model that folds in estimated contributions from two nucleosynthetic sites within a merger event. Our study suggests that while the dynamical ejecta of a neutron star merger is a likely production site for the formation of actinides, a significant contribution from another site or sites (e.g., the neutron star merger accretion disk wind) is required to explain abundances of r-process-enhanced, metal-poor stars.
128 - Peter B. Dobbie 2009
It is widely accepted that quasars and other active galactic nuclei (AGN) are powered by accretion of matter onto a central supermassive black hole. While numerical simulations have demonstrated the importance of magnetic fields in generating the tur bulence believed necessary for accretion, so far they have not produced the high mass accretion rates required to explain the most powerful sources. We describe new global 3D simulations we are developing to assess the importance of radiation and non-ideal MHD in generating magnetized outflows that can enhance the overall rates of angular momentum transport and mass accretion.
103 - James M. Lattimer 2019
The LIGO/Virgo Consortium (LVC) released a preliminary announcement of a candidate gravitational wave signal, S190426c, that could have arisen from a black hole-neutron star merger. As the first such candidate system, its properties such as masses an d spin are of great interest. Although LVC policy prohibits disclosure of these properties in preliminary announcements, LVC does release the estimated probabilities that this system is in specific categories, such as binary neutron star, binary black hole and black hole-neutron star. LVC also releases information concerning relative signal strength, distance, and the probability that ejected mass or a remnant disc survived the merger. In the case of events with a finite probability of being in more than one category, such as is likely to occur with a black hole-neutron star merger, it is shown how to estimate the masses of the components and the spin of the black hole. This technique is applied to the source S190426c.
We perform a full 3D general relativistic magnetohydrodynamical (GRMHD) simulation of an equal-mass, spinning, binary black hole approaching merger, surrounded by a circumbinary disk and with a mini-disk around each black hole. For this purpose, we e volve the ideal GRMHD equations on top of an approximated spacetime for the binary that is valid in every position of space, including the black hole horizons, during the inspiral regime. We use relaxed initial data for the circumbinary disk from a previous long-term simulation, where the accretion is dominated by a $m=1$ overdensity called the lump. We compare our new spinning simulation with a previous non-spinning run, studying how spin influences the mini-disk properties. We analyze the accretion from the inner edge of the lump to the black hole, focusing on the angular momentum budget of the fluid around the mini-disks. We find that mini-disks in the spinning case have more mass over a cycle than the non-spinning case. However, in both cases, we find most of the mass received by the black holes is delivered by the direct plunging of material from the lump. We also analyze the morphology and variability of the electromagnetic fluxes and we find they share the same periodicities of the accretion rate. In the spinning case, we find that the outflows are $8$ times stronger than the non-spinning case. Our results will be useful to understand and produce realistic synthetic light curves and spectra, which can be used in future observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا