ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical manipulation of the exciton charge state in single layer tungsten disulfide

145   0   0.0 ( 0 )
 نشر من قبل Duncan Maude
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Raman scattering and photoluminescence (PL) emission are used to investigate a single layer of tungsten disulfide (WS$_{2}$) obtained by exfoliating n-type bulk crystals. Direct gap emission with both neutral and charged exciton recombination is observed in the low temperature PL spectra. The ratio between the trion and exciton emission can be tuned simply by varying the excitation power. Moreover, the intensity of the trion emission can be independently tuned using additional sub band gap laser excitation.



قيم البحث

اقرأ أيضاً

66 - Aida Hichri 2016
The ultrathin transition metal dichalcogenides (TMDs) have emerged as promising materials for various applications using two dimensional (2D) semiconductors. They have attracted increasing attention due to their unique optical properties originate fr om neutral and charged excitons. Here, we report negatively charged exciton formation in monolayer TMDs, notably tungsten disulfide WS2. Our theory is based on an effective mass model of neutral and charged excitons, parameterized by ab-initio calculations. Taking into the account the strong correlation between the monolayer WS2 and the surrounding dielectric environment, our theoretical results are in good agreement with one-photon photoluminescence (PL) and reflectivity measurements. We also show that the exciton state with p-symmetry, experimentally observed by two-photon PL emission, is energetically below the 2s-state. We use the equilibrium mass action law, to quantify the relative weight of exciton and trion PL. We show that exciton and trion emission can be tuned and controlled by external parameters like temperature, pumping and injection electrons. Finally, in comparison with experimental measurements, we show that exciton emission in monolayer tungsten dichalcogenides is substantially reduced. This feature suggests that free exciton can be trapped in disordered potential wells to form a localized exciton and therefore offers a route toward novel optical properties.
Resonant Raman spectra of single layer WS$_{2}$ flakes are presented. A second order Raman peak (2LA) appears under resonant excitation with a separation from the E$^{1}_{2g}$ mode of only $4$cm$^{-1}$. Depending on the intensity ratio and the respec tive line widths of these two peaks, any analysis which neglects the presence of the 2LA mode can lead to an inaccurate estimation of the position of the E$^{1}_{2g}$ mode, leading to a potentially incorrect assignment for the number of layers. Our results show that the intensity of the 2LA mode strongly depends on the angle between the linear polarization of the excitation and detection, a parameter which is neglected in many Raman studies.
A method is presented for optically preparing WS2 monolayers to luminesce from only the charged exciton (trion) state--completely suppressing the neutral exciton. When isolating the trion state, we observed changes in the Raman A1g intensity and an e nhanced feature on the low energy side of the E12g peak. Photoluminescence and optical reflectivity measurements confirm the existence of the prepared trion state. This technique also prepares intermediate regimes with controlled luminescence amplitudes of the neutral and charged exciton. This effect is reversible by exposing the sample to air, indicating the change is mitigated by surface interactions with the ambient environment. This method provides a tool to modify optical emission energy and to isolate physical processes in this and other two-dimensional materials.
The exciton dynamics in monolayer black phosphorus is investigated over a very wide range of photoexcited exciton densities using time resolved photoluminescence. At low excitation densities, the exciton dynamics is successfully described in terms of a double exponential decay. With increasing exciton population, a fast, non-exponential component develops as exciton-exciton annihilation takes over as the dominant recombination mechanism under high excitation conditions. Our results identify an upper limit for the injection density, after which exciton-exciton annihilation reduces the quantum yield, which will significantly impact the performance of light emitting devices based on single layer black phosphorus.
We present a complete characterisation at the nanoscale of the growth and structure of single-layer tungsten disulfide (WS$_2$) epitaxially grown on Au(111). Following the growth process in real time with fast x-ray photoelectron spectroscopy, we obt ain a singly-oriented layer by choosing the proper W evaporation rate and substrate temperature during the growth. Information about the morphology, size and layer stacking of the WS$_2$ layer were achieved by employing x-ray photoelectron diffraction and low-energy electron microscopy. The strong spin splitting in the valence band of WS$_2$ coupled with the single-orientation character of the layer make this material the ideal candidate for the exploitation of the spin and valley degrees of freedom.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا