ترغب بنشر مسار تعليمي؟ اضغط هنا

CeLAND: search for a 4th light neutrino state with a 3 PBq 144Ce-144Pr electron antineutrino generator in KamLAND

188   0   0.0 ( 0 )
 نشر من قبل Thierry Lasserre
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Gando




اسأل ChatGPT حول البحث

The reactor neutrino and gallium anomalies can be tested with a 3-4 PBq (75-100 kCi scale) 144Ce-144Pr antineutrino beta-source deployed at the center or next to a large low-background liquid scintillator detector. The antineutrino generator will be produced by the Russian reprocessing plant PA Mayak as early as 2014, transported to Japan, and deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND) as early as 2015. KamLANDs 13 m diameter target volume provides a suitable environment to measure the energy and position dependence of the detected neutrino flux. A characteristic oscillation pattern would be visible for a baseline of about 10 m or less, providing a very clean signal of neutrino disappearance into a yet-unknown, sterile neutrino state. This will provide a comprehensive test of the electron dissaperance neutrino anomalies and could lead to the discovery of a 4th neutrino state for Delta_m^2 > 0.1 eV^2 and sin^2(2theta) > 0.05.



قيم البحث

اقرأ أيضاً

117 - A. Gando , Y. Gando , S. Hayashida 2013
We propose to test for short baseline neutrino oscillations, implied by the recent reevaluation of the reactor antineutrino flux and by anomalous results from the gallium solar neutrino detectors. The test will consist of producing a 75 kCi 144Ce - 1 44Pr antineutrino source to be deployed in the Kamioka Liquid Scintillator Anti-Neutrino Detector (KamLAND). KamLANDs 13m diameter target volume provides a suitable environment to measure energy and position dependence of the detected neutrino flux. A characteristic oscillation pattern would be visible for a baseline of about 10 m or less, providing a very clean signal of neutrino disappearance into a yet-unknown, sterile state. Such a measurement will be free of any reactor-related uncertainties. After 1.5 years of data taking the Reactor Antineutrino Anomaly parameter space will be tested at > 95% C.L.
Several observed anomalies in neutrino oscillation data can be explained by a hypothetical fourth neutrino separated from the three standard neutrinos by a squared mass difference of a few eV^2. We show that this hypothesis can be tested with a PBq ( ten kilocurie scale) 144Ce or 106Ru antineutrino beta-source deployed at the center of a large low background liquid scintillator detector. In particular, the compact size of such a source could yield an energy-dependent oscillating pattern in event spatial distribution that would unabiguously determine neutrino mass differences and mixing angles.
In connection with the question of possible existence of sterile neutrino the laboratory on the basis of SM-3 reactor was created to search for oscillations of reactor antineutrino. A prototype of a neutrino detector with scintillator volume of 400 l can be moved at the distance of 6-11 m from the reactor core. The measurements of background conditions have been made. It is shown that the main experimental problem is associated with cosmic radiation background. Test measurements of dependence of a reactor antineutrino flux on the distance from a reactor core have been made. The prospects of search for oscillations of reactor antineutrino at short distances are discussed.
We introduce a novel approach to investigate CP violation in the neutrino sector, based on the simultaneous detection of $ u_e$ and $bar{ u}_e$ stemming from the oscillation of $ u_{mu}$ and $bar{ u}_{mu}$ produced in the decay at rest of $pi$s and $ mu$s at a beam dump. This approach relies on a novel liquid scintillator detector technology expected to yield unprecedented identification of $ u_e$ and $bar{ u}_e$ charged-current interactions, which we investigate by means of Montecarlo simulations. Here we report preliminary results concerning both the detection technique and its physics reach.
The sensitivity of experimental searches for axion dark matter coupled to photons is typically proportional to the strength of the applied static magnetic field. We demonstrate how a permeable material can be used to enhance the magnitude of this sta tic magnetic field, and therefore improve the sensitivity of such searches in the low frequency lumped-circuit limit. Using gadolinium iron garnet toroids at temperature 4.2 K results in a factor of 4 enhancement compared to an air-core toroidal design. The enhancement is limited by magnetic saturation. Correlation of signals from three such toroids allows efficient rejection of systematics due to electromagnetic interference. The sensitivity of a centimeter-scale axion dark matter search based on this approach is on the order of $g_{agammagamma}approx10^{-9}$ GeV$^{-1}$ after 8 hours of data collection for axion masses near $10^{-10}$ eV. This approach may substantially extend the sensitivity reach of large-volume lumped element axion dark matter searches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا