ﻻ يوجد ملخص باللغة العربية
The nonequilibrium Dyson (or Kadanoff-Baym) equation, which is an equation of motion with long-range memory kernel for real-time Green functions, underlies many numerical approaches based on the Keldysh formalism. In this paper we map the problem of solving the Dyson equation in real-time onto a noninteracting auxiliary Hamiltonian with additional bath degrees of freedom. The solution of the auxiliary model does not require the evaluation of a memory kernel and can thus be implemented in a very memory efficient way. The mapping is derived for a self-energy which is local in space and is thus directly applicable within nonequilibrium dynamical mean-field theory (DMFT). We apply the method to study the interaction quench in the Hubbard model for an optical lattice with a narrow confinement, using inhomogeneous DMFT in combination with second-order weak-coupling perturbation theory. We find that, although the quench excites pronounced density oscillations, signatures of the two-stage relaxation similar to the homogeneous system can be observed by looking at the time-dependent occupations of natural orbitals.
We study the single-impurity Anderson model out of equilibrium under the influence of a bias voltage $phi$ and a magnetic field $B$. We investigate the interplay between the shift ($omega_B$) of the Kondo peak in the spin-resolved density of states (
We present a general scheme to map correlated nonequilibrium quantum impurity problems onto an auxiliary open quantum system of small size. The infinite fermionic reservoirs of the original system are thereby replaced by a small number $N_B$ of nonin
The recently introduced auxiliary Hamiltonian approach [Balzer K and Eckstein M 2014 Phys. Rev. B 89 035148] maps the problem of solving the two-time Kadanoff-Baym equations onto a noninteracting auxiliary system with additional bath degrees of freed
We derive an exact mapping from the action of nonequilibrium dynamical mean-field theory (DMFT) to a single-impurity Anderson model (SIAM) with time-dependent parameters, which can be solved numerically by exact diagonalization. The representability
Perturbation theory using self-consistent Greens functions is one of the most widely used approaches to study many-body effects in condensed matter. On the basis of general considerations and by performing analytical calculations for the specific exa