ﻻ يوجد ملخص باللغة العربية
The Hubble Frontier Fields (HFF) program combines the capabilities of the Hubble Space Telescope (HST) with the gravitational lensing of massive galaxy clusters to probe the distant Universe to an unprecedented depth. Here, we present the results of the first combined HST and Spitzer observations of the cluster Abell 2744. We combine the full near-infrared data with ancillary optical images to search for gravitationally lensed high-redshift (z > 6) galaxies. We report the detection of 15 I814-dropout candidates at z ~ 6-7 and one Y105-dropout at z ~ 8 in a total survey area of 1.43 arcmin^2 in the source plane. The predictions of our lens model allow us to also identify five multiply-imaged systems lying at redshifts between z ~ 6 and z ~ 8. Thanks to constraints from the mass distribution in the cluster, we were able to estimate the effective survey volume corrected for completeness and magnification effects. This was in turn used to estimate the rest-frame ultraviolet luminosity function (LF) at z ~ 6-8. Our LF results are generally in agreement with the most recent blank field estimates, confirming the feasibility of surveys through lensing clusters. Although based on a shallower observations than what will be achieved in the final dataset including the full ACS observations, the LF presented here extends down to Muv ~ -18.5 at z ~ 7 with one identified object at Muv ~ -15 thanks to the highly-magnified survey areas. This early study forecasts the power of using massive galaxy clusters as cosmic telescopes and its complementarity to blank fields.
We present a joint optical/X-ray analysis of the massive galaxy cluster Abell 2744 (z=0.308). Our strong- and weak-lensing analysis within the central region of the cluster, i.e., at R<1Mpc from the brightest cluster galaxy, reveals eight substructur
Hubble Frontier Fields (HFF) imaging of the most powerful lensing clusters provides access to the most magnified distant galaxies. The challenge is to construct lens models capable of describing these complex massive, merging clusters so that individ
We present an analysis of MUSE observations obtained on the massive Frontier Fields cluster Abell 2744. This new dataset covers the entire multiply-imaged region around the cluster core. We measure spectroscopic redshifts for HST-selected continuum s
We present a high-precision mass model of galaxy cluster Abell 2744, based on a strong-gravitational-lensing analysis of the emph{Hubble Space Telescope Frontier Fields} (HFF) imaging data, which now include both emph{Advanced Camera for Surveys} and
Cluster mergers leave distinct signatures in the ICM in the form of shocks and diffuse cluster radio sources that provide evidence for the acceleration of relativistic particles. However, the physics of particle acceleration in the ICM is still not f