ﻻ يوجد ملخص باللغة العربية
Aramayona and Leininger have provided a finite rigid subset $mathfrak{X}(Sigma)$ of the curve complex $mathscr{C}(Sigma)$ of a surface $Sigma = Sigma^n_g$, characterized by the fact that any simplicial injection $mathfrak{X}(Sigma) to mathscr{C}(Sigma)$ is induced by a unique element of the mapping class group $mathrm{Mod}(Sigma)$. In this paper we prove that, in the case of the sphere with $ngeq 5$ marked points, the reduced homology class of the finite rigid set of Aramayona and Leininger is a $mathrm{Mod}(Sigma)$-module generator for the reduced homology of the curve complex $mathscr{C}(Sigma)$, answering in the affirmative a question posed by Aramayona and Leininger. For the surface $Sigma = Sigma_g^n$ with $ggeq 3$ and $nin {0,1}$ we find that the finite rigid set $mathfrak{X}(Sigma)$ of Aramayona and Leininger contains a proper subcomplex $X(Sigma)$ whose reduced homology class is a $mathrm{Mod}(Sigma)$-module generator for the reduced homology of $mathscr{C}(Sigma)$ but which is not itself rigid.
For each closed surface of genus $gge3$, we find a finite subcomplex of the separating curve complex that is rigid with respect to incidence-preserving maps.
The Kakimizu complex is usually defined in the context of knots, where it is known to be quasi-Euclidean. We here generalize the definition of the Kakimizu complex to surfaces and 3-manifolds (with or without boundary). Interestingly, in the setting
We report on the modification of drag by neutrally buoyant spherical particles in highly turbulent Taylor-Couette flow. These particles can be used to disentangle the effects of size, deformability, and volume fraction on the drag, when contrasted wi
We study the structure of certain classes of homologically trivial locally C*-algebras. These include algebras with projective irreducible Hermitian A-modules, biprojective algebras, and superbiprojective algebras. We prove that, if A is a locally C*
By the work of Harer, the reduced homology of the complex of curves is a fundamental cohomological object associated to all torsion free finite index subgroups of the mapping class group. We call this homology group the Steinberg module of the mappin