ترغب بنشر مسار تعليمي؟ اضغط هنا

A curious polynomial interpolation of Carlitz-Riordans $q$-ballot numbers

117   0   0.0 ( 0 )
 نشر من قبل Jiang Zeng
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Frederic Chapoton




اسأل ChatGPT حول البحث

We study a polynomial sequence $C_n(x|q)$ defined as a solution of a $q$-difference equation. This sequence, evaluated at $q$-integers, interpolates Carlitz-Riordans $q$-ballot numbers. In the basis given by some kind of $q$-binomial coefficients, the coefficients are again some $q$-ballot numbers. We obtain in a combinatorial way another curious recurrence relation for these polynomials.



قيم البحث

اقرأ أيضاً

210 - Tongyuan Zhao , Yue Sun , 2021
A ballot permutation is a permutation {pi} such that in any prefix of {pi} the descent number is not more than the ascent number. In this article, we obtained a formula in close form for the multivariate generating function of {A(n,d,j)}, which denot e the number of permutations of length n with d descents and j as the first letter. Besides, by a series of calculations with generatingfunctionology, we confirm a recent conjecture of Wang and Zhang for ballot permutations.
The Springer numbers are defined in connection with the irreducible root systems of type $B_n$, which also arise as the generalized Euler and class numbers introduced by Shanks. Combinatorial interpretations of the Springer numbers have been found by Purtill in terms of Andre signed permutations, and by Arnold in terms of snakes of type $B_n$. We introduce the inversion code of a snake of type $B_n$ and establish a bijection between labeled ballot paths of length n and snakes of type $B_n$. Moreover, we obtain the bivariate generating function for the number B(n,k) of labeled ballot paths starting at (0,0) and ending at (n,k). Using our bijection, we find a statistic $alpha$ such that the number of snakes $pi$ of type $B_n$ with $alpha(pi)=k$ equals B(n,k). We also show that our bijection specializes to a bijection between labeled Dyck paths of length 2n and alternating permutations on [2n].
73 - Yifei Li 2018
We derive an equation that is analogous to a well-known symmetric function identity: $sum_{i=0}^n(-1)^ie_ih_{n-i}=0$. Here the elementary symmetric function $e_i$ is the Frobenius characteristic of the representation of $mathcal{S}_i$ on the top homo logy of the subset lattice $B_i$, whereas our identity involves the representation of $mathcal{S}_ntimes mathcal{S}_n$ on the Segre product of $B_n$ with itself. We then obtain a q-analogue of a polynomial identity given by Carlitz, Scoville and Vaughan through examining the Segre product of the subspace lattice $B_n(q)$ with itself. We recognize the connection between the Euler characteristic of the Segre product of $B_n(q)$ with itself and the representation on the Segre product of $B_n$ with itself by recovering our polynomial identity from specializing the identity on the representation of $mathcal{S}_itimes mathcal{S}_i$.
We give combinatorial proofs of $q$-Stirling identities using restricted growth words. This includes a poset theoretic proof of Carlitzs identity, a new proof of the $q$-Frobenius identity of Garsia and Remmel and of Ehrenborgs Hankel $q$-Stirling de terminantal identity. We also develop a two parameter generalization to unify identities of Mercier and include a symmetric function version.
The emph{$q,t$-Catalan numbers} $C_n(q,t)$ are polynomials in $q$ and $t$ that reduce to the ordinary Catalan numbers when $q=t=1$. These polynomials have important connections to representation theory, algebraic geometry, and symmetric functions. Ha glund and Haiman discovered combinatorial formulas for $C_n(q,t)$ as weighted sums of Dyck paths (or equivalently, integer partitions contained in a staircase shape). This paper undertakes a combinatorial investigation of the joint symmetry property $C_n(q,t)=C_n(t,q)$. We conjecture some structural decompositions of Dyck objects into mutually opposite subcollections that lead to a bijective explanation of joint symmetry in certain cases. A key new idea is the construction of infinite chains of partitions that are independent of $n$ but induce the joint symmetry for all $n$ simultaneously. Using these methods, we prove combinatorially that for $0leq kleq 9$ and all $n$, the terms in $C_n(q,t)$ of total degree $binom{n}{2}-k$ have the required symmetry property.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا