ترغب بنشر مسار تعليمي؟ اضغط هنا

Science enabled by high precision inertial formation flying

134   0   0.0 ( 0 )
 نشر من قبل Gerry Skinner
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The capability of maintaining two satellites in precise relative position, stable in a celestial coordinate system, would enable major advances in a number of scientific disciplines and with a variety of types of instrumentation. The common requirement is for formation flying of two spacecraft with the direction of their vector separation in inertial coordinates precisely controlled and accurately determined as a function of time. We consider here the scientific goals that could be achieved with such technology and review some of the proposals that have been made for specific missions. Types of instrumentation that will benefit from the development of this type of formation flying include 1) imaging systems, in which an optical element on one spacecraft forms a distant image recorded by a detector array on the other spacecraft, including telescopes capable of very high angular resolution; 2) systems in which the front spacecraft of a pair carries an occulting disk, allowing very high dynamic range observations of the solar corona and exoplanets; 3) interferometers, another class of instrument that aims at very high angular resolution and which, though usually requiring more than two spacecraft, demands very much the same developments.



قيم البحث

اقرأ أيضاً

An international consortium is presently constructing a beamformer for the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile that will be available as a facility instrument. The beamformer will aggregate the entire collecting area of the a rray into a single, very large aperture. The extraordinary sensitivity of phased ALMA, combined with the extremely fine angular resolution available on baselines to the Northern Hemisphere, will enable transformational new very long baseline interferometry (VLBI) observations in Bands 6 and 7 (1.3 and 0.8 mm) and provide substantial improvements to existing VLBI arrays in Bands 1 and 3 (7 and 3 mm). The ALMA beamformer will have impact on a variety of scientific topics, including accretion and outflow processes around black holes in active galactic nuclei (AGN), tests of general relativity near black holes, jet launch and collimation from AGN and microquasars, pulsar and magnetar emission processes, the chemical history of the universe and the evolution of fundamental constants across cosmic time, maser science, and astrometry.
The National Academy Committee on Astrobiology and Planetary Science (CAPS) made a recommendation to study a large/medium-class dedicated space telescope for planetary science, going beyond the Discovery-class dedicated planetary space telescope endo rsed in Visions and Voyages. Such a telescope would observe targets across the entire solar system, engaging a broad spectrum of the science community. It would ensure that the high-resolution, high-sensitivity observations of the solar system in visible and UV wavelengths revolutionized by the Hubble Space Telescope (HST) could be extended. A dedicated telescope for solar system science would: (a) transform our understanding of time-dependent phenomena in our solar system that cannot be studied currently under programs to observe and visit new targets and (b) enable a comprehensive survey and spectral characterization of minor bodies across the solar system, which requires a large time allocation not supported by existing facilities. The time-domain phenomena to be explored are critically reliant on high spatial resolution UV-visible observations. This paper presents science themes and key questions that require a long-lasting space telescope dedicated to planetary science that can capture high-quality, consistent data at the required cadences that are free from effects of the terrestrial atmosphere and differences across observing facilities. Such a telescope would have excellent synergy with astrophysical facilities by placing planetary discoveries made by astrophysics assets in temporal context, as well as triggering detailed follow-up observations using larger telescopes. The telescope would support future missions to the Ice Giants, Ocean Worlds, and minor bodies across the solar system by placing the results of such targeted missions in the context of longer records of temporal activities and larger sample populations.
The ultimate astronomical observatory would be a formation flying interferometer in space, immune to atmospheric turbulence and absorption, free from atmospheric and telescope thermal emission, and reconfigurable to adjust baselines according to the required angular resolution. Imagine the near/mid-infrared sensitivity of the JWST and the far-IR sensitivity of Herschel but with ALMA-level angular resolution, or imagine having the precision control to null host star light across 250m baselines and to detect molecules from the atmospheres of nearby exo-Earths. With no practical engineering limit to the formations size or number of telescopes in the array, formation flying interferometry will revolutionize astronomy and this White Paper makes the case that it is now time to accelerate investments in this technological area. Here we provide a brief overview of the required technologies needed to allow light to be collected and interfered using separate spacecrafts. We emphasize the emerging role of inexpensive smallSat projects and the excitement for the LISA Gravitational Wave Interferometer to push development of the required engineering building-blocks. We urge the Astro2020 Decadal Survey Committee to highlight the need for a small-scale formation flying space interferometer project to demonstrate end-to-end competency with a timeline for first stellar fringes by the end of the decade.
At peak, long-duration gamma-ray bursts are the most luminous sources of electromagnetic radiation known. Since their progenitors are massive stars, they provide a tracer of star formation and star-forming galaxies over the whole of cosmic history. T heir bright power-law afterglows provide ideal backlights for absorption studies of the interstellar and intergalactic medium back to the reionization era. The proposed THESEUS mission is designed to detect large samples of GRBs at $z>6$ in the 2030s, at a time when supporting observations with major next generation facilities will be possible, thus enabling a range of transformative science. THESEUS will allow us to explore the faint end of the luminosity function of galaxies and the star formation rate density to high redshifts; constrain the progress of re-ionisation beyond $zgtrsim6$; study in detail early chemical enrichment from stellar explosions, including signatures of Population III stars; and potentially characterize the dark energy equation of state at the highest redshifts.
The processes that transform gas and dust in circumstellar disks into diverse exoplanets remain poorly understood. One key pathway is to study exoplanets as they form in their young ($sim$few~Myr) natal disks. Extremely Large Telescopes (ELTs) such a s GMT, TMT, or ELT, can be used to establish the initial chemical conditions, locations, and timescales of planet formation, via (1)~measuring the physical and chemical conditions in protoplanetary disks using infrared spectroscopy and (2)~studying planet-disk interactions using imaging and spectro-astrometry. Our current knowledge is based on a limited sample of targets, representing the brightest, most extreme cases, and thus almost certainly represents an incomplete understanding. ELTs will play a transformational role in this arena, thanks to the high spatial and spectral resolution data they will deliver. We recommend a key science program to conduct a volume-limited survey of high-resolution spectroscopy and high-contrast imaging of the nearest protoplanetary disks that would result in an unbiased, holistic picture of planet formation as it occurs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا