ﻻ يوجد ملخص باللغة العربية
We analyse processes of particle acceleration in the Fermi Bubbles. The goal of our investigations is to obtain restrictions for acceleration mechanisms. Our analysis of the three processes: acceleration from background plasma, re-acceleration of relativistic electrons emitted by supernova remnants, and acceleration by shocks generated by processes of star tidal disruption in the Galactic Center, showed that the model of multi-shock acceleration does not have serious objections at present and therefore seems us more attractive than others.
Fermi LAT has discovered two extended gamma-ray bubbles above and below the galactic plane. We propose that their origin is due to the energy release in the Galactic center (GC) as a result of quasi-periodic star accretion onto the central black hole
The discovery of the Fermi bubbles---a huge bilobular structure seen in GeV gamma-rays above and below the Galactic center---implies the presence of a large reservoir of high energy particles at $sim 10 , text{kpc}$ from the disk. The absence of evid
The shocks of supernova remnants (SNRs) are believed to accelerate particles to cosmic ray (CR) energies. The amplification of the magnetic field due to CRs propagating in the shock region is expected to have an impact on both the emission from the a
We study stochastic acceleration models for the Fermi bubbles. Turbulence is excited just behind the shock front via Kelvin--Helmholtz, Rayleigh--Taylor, or Richtmyer--Meshkov instabilities, and plasma particles are continuously accelerated by the in
Magnetic reconnection, especially in the relativistic regime, provides an efficient mechanism for accelerating relativistic particles and thus offers an attractive physical explanation for nonthermal high-energy emission from various astrophysical so