ﻻ يوجد ملخص باللغة العربية
Ultra-high energy (UHE) photons play an important role as an independent probe of the photo-pion production mechanism by UHE cosmic rays. Their observation, or non-observation, may constrain astrophysical scenarios for the origin of UHECRs and help to understand the nature of the flux suppression observed by several experiments at energies above $10^{19.5}$ eV. Whereas the interaction length of UHE photons above $10^{17}$ eV ranges from a few hundred kpc up to tenths of Mpc, photons can interact with the extragalactic background radiation initiating the development of electromagnetic cascades which affect the fluxes of photons observed at Earth. The interpretation of the current experimental results rely on the simulations of the UHE photon propagation. In this paper, we present the novel Monte Carlo code EleCa to simulate the $Ele$ctromagnetic $Ca$scading initiated by high-energy photons and electrons. We provide an estimation of the surviving probability for photons inducing electromagnetic cascades as a function of their distance from the observer and we calculate the distances within which we expect to observe UHE photons with energy between $10^{17}$ and $10^{19}$ eV. Furthermore, the flux of GZK photons at Earth is investigated in several astrophysical scenarios where we vary both injection spectrum and composition at the source and the intensity of the intervening extragalactic magnetic field. Although the photon propagation depends on several astrophysical factors, our numerical predictions combined with future experimental observations (or non-observations) of UHE photons -- in the energy range between $10^{17.5}$ eV and $10^{20}$ eV -- can help to constrain these scenarios.
More than 100 years after the discovery of cosmic rays and various experimental efforts, the origin of ultra-high energy cosmic rays (E > 100 PeV) remains unclear. The understanding of production and propagation effects of these highest energetic par
We explore the possibility that the recently detected dipole anisotropy in the arrival directions of~$>8$~EeV ultra-high energy cosmic-rays (UHECRs) arises due to the large-scale structure (LSS). We assume that the cosmic ray sources follow the matte
In order to interpret cosmic ray observations, detailed modeling of propagation effects invoking all important messengers is necessary. We introduce a new photon production and propagation code as an inherent part of the CRPropa 3 software framework.
The Pierre Auger Observatory, located in Argentina, provides an unprecedented integrated aperture for the search of photons with energy above 100 PeV. In this contribution recent results are presented including the diffuse search for photons and the
We present theoretical expectations for non-thermal emission due to the bulk Comptonization at the ultra-relativistic shock breakout. We calculate the transfer of photons emitted from the shocked matter with a Monte Carlo code fully taking into accou