ترغب بنشر مسار تعليمي؟ اضغط هنا

Zero-order ultrasensitivity: A study of criticality and fluctuations under the total quasi-steady state approximation in the linear noise regime

271   0   0.0 ( 0 )
 نشر من قبل Manoj Gopalakrishnan
 تاريخ النشر 2013
  مجال البحث علم الأحياء فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Zero-order ultrasensitivity (ZOU) is a long known and interesting phenomenon in enzyme networks. Here, a substrate is reversibly modified by two antagonistic enzymes (a push-pull system) and the fraction in modified state undergoes a sharp switching from near-zero to near-unity at a critical value of the ratio of the enzyme concentrations, under saturation conditions. ZOU and its extensions have been studied for several decades now, ever since the seminal paper of Goldbeter and Koshland (1981); however, a complete probabilistic treatment, important for the study of fluctuations in finite populations, is still lacking. In this paper, we study ZOU using a modular approach, akin to the total quasi-steady state approximation (tQSSA). This approach leads to a set of Fokker-Planck (drift-diffusion) equations for the probability distributions of the intermediate enzyme-bound complexes, as well as the modified/unmodified fractions of substrate molecules. We obtain explicit expressions for various average fractions and their fluctuations in the linear noise approximation (LNA). The emergence of a critical point for the switching transition is rigorously established. New analytical results are derived for the average and variance of the fractional substrate concentration in various chemical states in the near-critical regime. For the total fraction in the modified state, the variance is shown to be a maximum near the critical point and decays algebraically away from it, similar to a second-order phase transition. The new analytical results are compared with existing ones as well as detailed numerical simulations using a Gillespie algorithm.



قيم البحث

اقرأ أيضاً

The linear noise approximation models the random fluctuations from the mean field model of a chemical reaction that unfolds near the thermodynamic limit. Specifically, the fluctuations obey a linear Langevin equation up to order $Omega^{-1/2}$, where $Omega$ is the size of the chemical system (usually the volume). Under the presence of disparate timescales, the linear noise approximation admits a quasi-steady-state reduction referred to as the slow scale linear noise approximation. However, the slow scale linear approximation has only been derived for fast/slow systems that are in Tikhonov standard form. In this work, we derive the slow scale linear noise approximation directly from Fenichel theory, without the need for a priori scaling and dimensional analysis. In so doing, we can apply for the first time the slow scale linear noise approximation to fast/slow systems that are not of standard form. This is important, because often times algorithms are only computationally expensive in parameter ranges where the system is singularly perturbed, but not in standard form. We also comment on the breakdown of the slow scale linear noise approximation near dynamic bifurcation points -- a topic that has remained absent in the chemical kinetics literature, despite the presence of bifurcations in simple biochemical reactions, such the Michaelis--Menten reaction mechanism.
Several independent observations have suggested that catastrophe transition in microtubules is not a first-order process, as is usually assumed. Recent {it in vitro} observations by Gardner et al.[ M. K. Gardner et al., Cell {bf147}, 1092 (2011)] sho wed that microtubule catastrophe takes place via multiple steps and the frequency increases with the age of the filament. Here, we investigate, via numerical simulations and mathematical calculations, some of the consequences of age dependence of catastrophe on the dynamics of microtubules as a function of the aging rate, for two different models of aging: exponential growth, but saturating asymptotically and purely linear growth. The boundary demarcating the steady state and non-steady state regimes in the dynamics is derived analytically in both cases. Numerical simulations, supported by analytical calculations in the linear model, show that aging leads to non-exponential length distributions in steady state. More importantly, oscillations ensue in microtubule length and velocity. The regularity of oscillations, as characterized by the negative dip in the autocorrelation function, is reduced by increasing the frequency of rescue events. Our study shows that age dependence of catastrophe could function as an intrinsic mechanism to generate oscillatory dynamics in a microtubule population, distinct from hitherto identified ones.
227 - Peijie Zhou , Tiejun Li 2015
Motivated by the famous Waddingtons epigenetic landscape metaphor in developmental biology, biophysicists and applied mathematicians made different proposals to realize this metaphor in a rationalized way. We adopt comprehensive perspectives to syste matically investigate three different but closely related realizations in recent literature: namely the potential landscape theory from the steady state distribution of stochastic differential equations (SDEs), the quasi-potential from the large deviation theory, and the construction through SDE decomposition and A-type integral.The connections among these theories are established in this paper. We demonstrate that the quasi-potential is the zero noise limit of the potential landscape. We also show that the potential function in the third proposal coincides with the quasi-potential. The most probable transition path by minimizing the Onsager-Machlup or Freidlin-Wentzell action functional is discussed as well. Furthermore, we compare the difference between local and global quasi-potential through the exchange of limit order for time and noise amplitude. As a consequence of such explorations, we arrive at the existence result for the SDE decomposition while deny its uniqueness in general cases. It is also clarified that the A-type integral is more appropriate to be applied to the decomposed SDEs rather than the original one. Our results contribute to a better understanding of existing landscape theories for biological systems.
Cellular processes do not follow deterministic rules; even in identical environments genetically identical cells can make random choices leading to different phenotypes. This randomness originates from fluctuations present in the biomolecular interac tion networks. Most previous work has been focused on the intrinsic noise (IN) of these networks. Yet, especially for high-copy-number biomolecules, extrinsic or environmental noise (EN) has been experimentally shown to dominate the variation. Here, we develop an analytical formalism that allows for calculation of the effect of EN on gene-expression motifs. We introduce a method for modeling bounded EN as an auxiliary species in the master equation. The method is fully generic and is not limited to systems with small EN magnitudes. We focus our study on motifs that can be viewed as the building blocks of genetic switches: a nonregulated gene, a self-inhibiting gene, and a self-promoting gene. The role of the EN properties (magnitude, correlation time, and distribution) on the statistics of interest are systematically investigated, and the effect of fluctuations in different reaction rates is compared. Due to its analytical nature, our formalism can be used to quantify the effect of EN on the dynamics of biochemical networks and can also be used to improve the interpretation of data from single-cell gene-expression experiments.
In biochemical networks, reactions often occur on disparate timescales and can be characterized as either fast or slow. The quasi-steady state approximation (QSSA) utilizes timescale separation to project models of biochemical networks onto lower-dim ensional slow manifolds. As a result, fast elementary reactions are not modeled explicitly, and their effect is captured by non-elementary reaction rate functions (e.g. Hill functions). The accuracy of the QSSA applied to deterministic systems depends on how well timescales are separated. Recently, it has been proposed to use the non-elementary rate functions obtained via the deterministic QSSA to define propensity functions in stochastic simulations of biochemical networks. In this approach, termed the stochastic QSSA, fast reactions that are part of non-elementary reactions are not simulated, greatly reducing computation time. However, it is unclear when the stochastic QSSA provides an accurate approximation of the original stochastic simulation. We show that, unlike the deterministic QSSA, the validity of the stochastic QSSA does not follow from timescale separation alone, but also depends on the sensitivity of the non-elementary reaction rate functions to changes in the slow species. The stochastic QSSA becomes more accurate when this sensitivity is small. Different types of QSSAs result in non-elementary functions with different sensitivities, and the total QSSA results in less sensitive functions than the standard or the pre-factor QSSA. We prove that, as a result, the stochastic QSSA becomes more accurate when non-elementary reaction functions are obtained using the total QSSA. Our work provides a novel condition for the validity of the QSSA in stochastic simulations of biochemical reaction networks with disparate timescales.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا