ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Resolution Near Infrared Spectroscopy of HD 100546: II. Analysis of variable rovibrational CO emission lines

245   0   0.0 ( 0 )
 نشر من قبل Sean Brittain
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present observations of rovibrational CO in HD 100546 from four epochs spanning January 2003 through December 2010. We show that the equivalent widths of the CO lines vary during this time period with the v=1-0 CO lines brightening more than the UV fluoresced lines from the higher vibrational states. While the spectroastrometric signal of the hot band lines remains constant during this period, the spectroastrometric signal of the v=1--0 lines varies substantially. At all epochs, the spectroastrometric signals of the UV fluoresced lines are consistent with the signal one would expect from gas in an axisymmetric disk. In 2003, the spectroastrometric signal of the v=1-0 P26 line was symmetric and consistent with emission from an axisymmetric disk. However, in 2006, there was no spatial offset of the signal detected on the red side of the profile, and in 2010, the spectroastrometric offset was yet more strongly reduced toward zero velocity. A model is presented that can explain the evolution of the equivalent width of the v=1-0 P26 line and its spectroastrometric signal by adding to the system a compact source of CO emission that orbits the star near the inner edge of the disk. We hypothesize that such emission may arise from a circumplanetary disk orbiting a gas giant planet near the inner edge of the circumstellar disk. We discuss how this idea can be tested observationally and be distinguished from an alternative interpretation of random fluctuations in the disk emission.



قيم البحث

اقرأ أيضاً

We present observations of ro-vibrational OH and CO emission from the Herbig Be star HD 100546. The emission from both molecules arises from the inner region of the disk extending from approximately 13 AU from the central star. The velocity profiles of the OH lines are narrower than the velocity profile of the [O I] 6300 Angstrom line indicating that the OH in the disk is not cospatial with the O I. This suggests that the inner optically thin region of the disk is largely devoid of molecular gas. Unlike the ro-vibrational CO emission lines, the OH lines are highly asymmetric. We show that the average CO and average OH line profiles can be fit with a model of a disk comprised of an eccentric inner wall and a circular outer disk. In this model, the vast majority of the OH flux (75%) originates from the inner wall, while the vast majority of the CO flux (65%) originates on the surface of the disk at radii greater than 13 AU. Eccentric inner disks are predicted by hydrodynamic simulations of circumstellar disks containing an embedded giant planet. We discuss the implications of such a disk geometry in light of models of planet disk tidal interactions and propose alternate explanations for the origin of the asymmetry.
HD~100546 is a Herbig Ae/Be star surrounded by a disk with a large central region that is cleared of gas and dust (i.e., an inner hole). High-resolution near-infrared spectroscopy reveals a rich emission spectrum of fundamental ro-vibrational CO emis sion lines whose time variable properties point to the presence of an orbiting companion within the hole. The Doppler shift and spectroastrometric signal of the CO v=1-0 P26 line, observed from 2003 to 2013, are consistent with a source of excess CO emission that orbits the star near the inner rim of the disk. The properties of the excess emission are consistent with those of a circumplanetary disk. In this paper, we report follow up observations that confirm our earlier prediction that the orbiting source of excess emission would disappear behind the near side of the inner rim of the outer disk in 2017. We find that while the hotband CO lines remained unchanged in 2017, the v=1-0 P26 line and its spectroastrometric signal returned to the profile observed in 2003. With these new observations, we further constrain the origin of the emission and discuss possible ways of confirming the presence of an orbiting planetary companion in the inner disk.
To reveal the origins of diffuse H-alpha emissions observed around the Herbig star MWC 1080, we have performed a high-resolution near-infrared (NIR) spectroscopic observation using the Immersion GRating INfrared Spectrograph (IGRINS). In the NIR H an d K bands, we detected various emission lines (six hydrogen Brackett lines, seven H2 lines, and an [Fe II] line) and compared their spatial locations with the optical (H-alpha and [S II]) and radio (13CO and CS) line maps. The shock-induced H2 and [Fe II] lines indicate the presence of multiple outflows, consisting of at least three, associated young stars in this region. The kinematics of H2 and [Fe II] near the northeast (NE) cavity edge supports that the NE main outflow from MWC 1080A is the blueshifted one with a low inclination angle. The H2 and [Fe II] lines near the southeast molecular region newly reveal that additional highly-blueshifted outflows originate from other young stars. The fluorescent H2 lines were found to trace photodissociation regions formed on the cylindrical surfaces of the main outflow cavity, which are expanding outward with a velocity of about 10-15 km/s. For the H-alpha emission, we identify its components associated with two stellar outflows and two young stars in addition to the dominant component of MWC 1080A scattered by dust. We also report a few faint H-alpha features located ~0.4 pc away in the southwest direction from MWC 1080A, which lie near the axes of the NE main outflow and one of the newly-identified outflows.
68 - Andrea Dupree 2018
We present results from a near infrared survey of the He I line (10830 Angstrom) in cool dwarf stars taken with the PHOENIX spectrograph at the 4-m Mayall telescope at Kitt Peak National Observatory. Spectral synthesis of this region reproduces some but not all atomic and molecular features. The equivalent width of the He line appears directly correlated with the soft X-ray stellar surface flux except among the coolest M dwarf stars, where the helium is surprisingly weak.
We report on a sensitive search for H2 1-0 S(1), 1-0 S(0) and 2-1 S(1) ro-vibrational emission at 2.12, 2.22 and 2.25 micron in a sample of 15 Herbig Ae/Be stars employing CRIRES, the ESO-VLT near-infrared high-resolution spectrograph, at R~90,000. W e detect the H2 1-0 S(1) line toward HD 100546 and HD 97048. In the other 13 targets, the line is not detected. The H2 1-0 S(0) and 2-1 S(1) lines are undetected in all sources. This is the first detection of near-IR H2 emission in HD 100546. The H2 1-0 S(1) lines observed in HD 100546 and HD 97048 are observed at a velocity consistent with the rest velocity of both stars, suggesting that they are produced in the circumstellar disk. In HD 97048, the emission is spatially resolved and it is observed to extend at least up to 200 AU. We report an increase of one order of magnitude in the H2 1-0 S(1) line flux with respect to previous measurements taken in 2003 for this star, which suggests line variability. In HD 100546 the emission is tentatively spatially resolved and may extend at least up to 50 AU. Modeling of the H2 1-0 S(1) line profiles and their spatial extent with flat keplerian disks shows that most of the emission is produced at a radius >5 AU. Upper limits to the H2 1-0 S(0)/ 1-0 S(1) and H2 2-1 S(1)/1-0 S(1) line ratios in HD 97048 are consistent with H2 gas at T>2000 K and suggest that the emission observed may be produced by X-ray excitation. The upper limits for the line ratios for HD 100546 are inconclusive. Because the H2 emission is located at large radii, for both sources a thermal emission scenario (i.e., gas heated by collisions with dust) is implausible. We argue that the observation of H2 emission at large radii may be indicative of an extended disk atmosphere at radii >5 AU. This may be explained by a hydrostatic disk in which gas and dust are thermally decoupled or by a disk wind caused by photoevaporation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا