ﻻ يوجد ملخص باللغة العربية
We have investigated from first-principles an electronic structure and magnetism in MnB4 compound with experimentally observed orthorhombic C12/m1 structure. It is found that Mn tetra-borides (MnB4) is found to have metallic ground state with well defined local Mn magnetic moments. This conclusion was drawn from calculation within full potential Linear Augmented Plane Wave method and Korringa-Kohn-Rostocker method using Disordered Local Moment Approximation. We have shown using Lichtenstein Green function method that magnetic exchange interactions between Mn moments are strongly ferromagnetic along 1D-chains of Mn atoms and they are practically vanishing between the chains. The metallic state appears to exhibit a strongly one-dimensional character since the single metallic band show dispersion only in one reciprocal lattice dimension. Thus it appears that MnB4 may be a perfect one-dimensional one-band Hubbard model system. Although LSDA predicts the magnetism in this system it may well be superconductor at low temperatures due to the correlation effects beyond mean field like approach.
Ferroelectric topological objects (e.g. vortices, skyrmions) provide a fertile ground for exploring emerging physical properties that could potentially be utilized in future configurable nanoelectronic devices. Here, we demonstrate quasi-one-dimensio
Using density functional theory we have performed theoretical investigations of the electronic properties of a free-standing one-dimensional organometallic vanadium-benzene wire. This system represents the limiting case of multi-decker V_n(C6H6)_{n+1
The experimental realization of time dependent ultracold lattice systems has paved the way towards the implementation of new Hubbard-like Hamiltonians. We show that in a one dimensional two components lattice dipolar Fermi gas the competition between
We study zigzag interfaces between insulating compounds that are isostructural to graphene, specifically II-VI, III-V and IV-IV two-dimensional (2D) honeycomb insulators. We show that these one-dimensional interfaces are polar, with a net density of
We report synthesis and magnetic properties of quasi-one-dimensional spin-$frac{1}{2}$ Heisenberg antiferromagnetic chain compound BaNa$_2$Cu(VO$_4$)$_2$. This orthovanadate has a centrosymmetric crystal structure, $C2/c$, where the magnetic Cu$^{2+}