ﻻ يوجد ملخص باللغة العربية
We show that with adiabatic passage, one can reliably drive two-photon optical transitions between the ground states and interacting Rydberg states in a pair of atoms. For finite Rydberg interaction strengths a new adiabatic pathway towards the doubly Rydberg excited state is identified when a constant detuning is applied with respect to an intermediate optically excited level. The Rydberg interaction among the excited atoms provides a phase that may be used to implement quantum gate operations on atomic ground state qubits.
In this paperwe propose two theoretical schemes for implementation of quantum phase gates by engineering the phase-sensitive dark state of two atoms subjected to Rydberg-Rydberg interaction. Combining the conventional adiabatic techniques and current
We present schemes for geometric phase compensation in adiabatic passage which can be used for the implementation of quantum logic gates with atomic ensembles consisting of an arbitrary number of strongly interacting atoms. Protocols using double seq
We analyze neutral atom Rydberg $C_Z$ gates based on adiabatic pulses applied symmetrically to both atoms. Analysis with smooth pulse shapes and Cs atom parameters predicts the gates can create Bell states with fidelity ${mathcal F}>0.999$ using adia
We show how a robust high-fidelity universal set of quantum gates can be implemented using a single form of non-adiabatic rapid passage whose parameters are optimized to maximize gate fidelity and reward gate robustness. Each gate in the universal se
In an atomic ensemble, quantum information is typically carried as single collective excitations. It is very advantageous if the creation of single excitations is efficient and robust. Rydberg blockade enables deterministic creation of single excitat