ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of entanglement between collective spins

250   0   0.0 ( 0 )
 نشر من قبل Filippo Troiani
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Entanglement between individual spins can be detected by using thermodynamics quantities as entanglement witnesses. This applies to collective spins also, provided that their internal degrees of freedom are frozen, as in the limit of weakly-coupled nanomagnets. Here, we extend such approach to the detection of entanglement between subsystems of a spin cluster, beyond such weak-coupling limit. The resulting inequalities are violated in spin clusters with different geometries, thus allowing the detection of zero- and finite-temperature entanglement. Under relevant and experimentally verifiable conditions, all the required expectation values can be traced back to correlation functions of individual spins, that are now made selectively available by four-dimensional inelastic neutron scattering.



قيم البحث

اقرأ أيضاً

The laws of thermodynamics allow work extraction from a single heat bath provided that the entropy decrease of the bath is compensated for by another part of the system. We propose a thermodynamic quantum engine that exploits this principle and consi sts of two electrons on a double quantum dot (QD). The engine is fueled by providing it with singlet spin states, where the electron spins on different QDs are maximally entangled, and its operation involves only changing the tunnel coupling between the QDs. Work can be extracted since the entropy of an entangled singlet is lower than that of a thermal (mixed) state, although they look identical when measuring on a single QD. We show that the engine is an optimal thermodynamic engine in the long-time limit. In addition, we include a microscopic description of the bath and analyze the engines finite-time performance using experimentally relevant parameters.
Because of their long coherence times and potential for scalability, semiconductor quantum-dot spin qubits hold great promise for quantum information processing. However, maintaining high connectivity between quantum-dot spin qubits, which favor line ar arrays with nearest neighbor coupling, presents a challenge for large-scale quantum computing. In this work, we present evidence for long-distance spin-chain-mediated superexchange coupling between electron spin qubits in semiconductor quantum dots. We weakly couple two electron spins to the ends of a two-site spin chain. Depending on the spin state of the chain, we observe oscillations between the distant end spins. We resolve the dynamics of both the end spins and the chain itself, and our measurements agree with simulations. Superexchange is a promising technique to create long-distance coupling between quantum-dot spin qubits.
We present an adiabatic approach to the design of entangling quantum operations with two electron spins localized in separate InAs/GaAs quantum dots via the Coulomb interaction between optically-excited localized states. Slowly-varying optical pulses minimize the pulse noise and the relaxation of the excited states. An analytic dressed state solution gives a clear physical picture of the entangling process, and a numerical solution is used to investigate the error dynamics. For two vertically-stacked quantum dots we show that, for a broad range of dot parameters, a two-spin state with concurrence $C>0.85$ can be obtained by four optical pulses with durations $sim 0.1 - 1$ ns.
We experimentally isolate, characterize and coherently control up to six individual nuclear spins that are weakly coupled to an electron spin in diamond. Our method employs multi-pulse sequences on the electron spin that resonantly amplify the intera ction with a selected nuclear spin and at the same time dynamically suppress decoherence caused by the rest of the spin bath. We are able to address nuclear spins with interaction strengths that are an order of magnitude smaller than the electron spin dephasing rate. Our results provide a route towards tomography with single-nuclear-spin sensitivity and greatly extend the number of available quantum bits for quantum information processing in diamond.
149 - A. Greilich 2008
We show that the spins of all electrons, each confined in a quantum dot of an (In,Ga)As/GaAs dot ensemble, can be driven into a single mode of precession about a magnetic field. This regime is achieved by allowing only a single mode within the electr on spin precession spectrum of the ensemble to be synchronized with a train of periodic optical excitation pulses. Under this condition a nuclei induced frequency focusing leads to a shift of all spin precession frequencies into the synchronized mode. The macroscopic magnetic moment of the electron spins that is created in this regime precesses without dephasing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا