ترغب بنشر مسار تعليمي؟ اضغط هنا

MHD Simulations of Magnetospheric Accretion, Ejection and Plasma-field Interaction

126   0   0.0 ( 0 )
 نشر من قبل Marina Romanova
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review recent axisymmetric and three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetospheric accretion, plasma-field interaction and outflows from the disk-magnetosphere boundary.



قيم البحث

اقرأ أيضاً

We present magnetohydrodynamic simulations of a resistive accretion disk continuously launching transmagnetosonic, collimated jets. We time-evolve the full set of magnetohydrodynamic equations, but neglect radiative losses in the energetics (radiativ ely inefficient). Our calculations demonstrate that a jet is self-consistently produced by the interaction of an accretion disk with an open, initially bent large-scale magnetic field. A constant fraction of heated disk material is launched in the inner equipartition disk regions, leading to the formation of a hot corona and a bright collimated, super-fastmagnetosonic jet. We illustrate the complete dynamics of the ``hot near steady-state outflow (where thermal pressure $simeq$ magnetic pressure) by showing force balance, energy budget and current circuits. The evolution to this near stationary state is analyzed in terms of the temporal variation of energy fluxes controlling the energetics of the accretion disk. We find that unlike advection-dominated accretion flow, the energy released by accretion is mainly sent into the jet rather than transformed into disk enthalpy. These magnetized, radiatively inefficient accretion-ejection structures can account for under-luminous thin disks supporting bright fast collimated jets as seen in many systems displaying jets (for instance M87).
We present results of global three-dimensional (3D) magnetohydrodynamic (MHD) simulations of accretion onto magnetized stars where both the magnetic and rotational axes of the star are tilted about the rotational axis of the disc. We observed that in itially the inner parts of the disc are warped, tilted, and process due to the magnetic interaction between the magnetosphere and the disc. Later, larger tilted discs form with the size increasing with the magnetic moment of the star. The normal vector to the discs are tilted at different angles, from 5-10 degrees up to 30-40 degrees. Small tilts may result from the winding of the magnetic field lines about the rotational axis of the star and the action of the magnetic force which tends to align the disc. Another possible explanation is the magnetic Bardeen-Petterson effect in which the disc settles in the equatorial plane of the star due to precessional and viscous torques in the disc. Tilted discs slowly precess with the time scale of the order of 50 Keplerian periods at the reference radius (approx. 3 stellar radii). Our results can be applied to different types of stars where signs of tilted discs and/or slow precession have been observed.
116 - Brian T. Welsch 2017
Coronal mass ejections (CMEs) are the primary drivers of severe space weather disturbances in the heliosphere. Models of CME dynamics have been proposed that do not fully include the effects of magnetic reconnection on the forces driving the ejection . Both observations and numerical modeling, however, suggest that reconnection likely plays a major role in most, if not all, fast CMEs. Here, we theoretically investigate the accretion of magnetic flux onto a rising ejection by reconnection involving the ejections background field. This reconnection alters the magnetic structure of the ejection and its environment, thereby modifying the forces acting upon the ejection, generically increasing its upward acceleration. The modified forces, in turn, can more strongly drive the reconnection. This feedback process acts, effectively, as an instability, which we refer to as a reconnective instability. Our analysis implies that CME models that neglect the effects of reconnection cannot accurately describe observed CME dynamics. Our ultimate aim is to understand changes in CME acceleration in terms of observable properties of magnetic reconnection, such as the amount of reconnected flux. This flux can be estimated from observations of flare ribbons and photospheric magnetic fields.
The sunspot penumbra is a transition zone between the strong vertical magnetic field area (sunspot umbra) and the quiet Sun. The penumbra has a fine filamentary structure that is characterized by magnetic field lines inclined toward the surface. Nume rical simulations of solar convection in inclined magnetic field regions have provided an explanation of the filamentary structure and the Evershed outflow in the penumbra. In this paper, we use radiative MHD simulations to investigate the influence of the magnetic field inclination on the power spectrum of vertical velocity oscillations. The results reveal a strong shift of the resonance mode peaks to higher frequencies in the case of a highly inclined magnetic field. The frequency shift for the inclined field is significantly greater than that in vertical field regions of similar strength. This is consistent with the behavior of fast MHD waves.
212 - R.V.E. Lovelace , K.R. Covey , 2010
Magnetospheric accretion is an important process for a wide range of astrophysical systems, and may play a role in the formation of gas giant planets. Extending the formalism describing stellar magnetospheric accretion into the planetary regime, we d emonstrate that magnetospheric processes may govern accretion onto young gas giants in the isolation phase of their development. Planets in the isolation phase have cleared out large gaps in their surrounding circumstellar disks, and settled into a quasi-static equilibrium with radii only modestly larger than their final sizes (i.e., $ r sim 1.4 r_{rm final}$). Magnetospheric accretion is less likely to play a role in a young gas giants main accretion phase, when the planets envelope is predicted to be much larger than the planets Alfven radius. For a fiducial 1 M$_J$ gas giant planet with a remnant isolation phase accretion rate of $dot{M}_{odot} =$ 10$^{-10} M_{odot}{rm yr}^{-1}=10^{-7}M_{J}{rm yr}^{-1}$, the disk accretion will be truncated at $sim 2.7r_J$ (with $r_J$ is Jupiters radius) and drive the planet to rotate with a period of $sim$7 hours. Thermal emission from planetary magnetospheric accretion will be difficult to observe; the most promising observational signatures may be non-thermal, such as gyrosynchrotron radiation that is clearly modulated at a period much shorter than the rotation period of the host star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا