ﻻ يوجد ملخص باللغة العربية
We derive upper and lower bounds on the absorption of ultraintense laser light by solids as a function of fundamental laser and plasma parameters. These limits emerge naturally from constrained optimization techniques applied to a generalization of the laser-solid interaction as a strongly-driven, relativistic, two degree of freedom Maxwell-Vlasov system. We demonstrate that the extrema and the phase-space-averaged absorption must always increase with intensity, and increase most rapidly when $10^{18} < I_L lambda_L^2 < 10^{20}$ W $mu$m$^2/$cm$^{2}$. Our results indicate that the fundamental empirical trend towards increasing fractional absorption with irradiance therefore reflects the underlying phase space constraints.
The interaction of intense laser beams with plasmas created on solid targets involves a rich non-linear physics. Because such dense plasmas are reflective for laser light, the coupling with the incident beam occurs within a thin layer at the interfac
Three-dimensional particle-in-cell simulation is used to investigate the witness proton acceleration in underdense plasma with a short intense Laguerre-Gaussian (LG) laser pulse. Driven by the LG10 laser pulse, a special bubble with an electron pilla
Production of the huge longitudinal magnetic fields by using an ultraintense laser pulse irradiating a solenoid target is considered. Through three-dimensional particle-in-cell simulations, it is shown that the longitudinal magnetic field up to ten k
Generation of relativistic electron (RE) beams during ultraintense laser pulse interaction with plasma targets is studied by collisional particle-in-cell (PIC) simulations. Strong magnetic field with transverse scale length of several local plasma sk
The future applications of the short-duration, multi-MeV ion beams produced in the interaction of high-intensity laser pulses with solid targets will require improvements in the conversion efficiency, peak ion energy, beam monochromaticity, and colli