ترغب بنشر مسار تعليمي؟ اضغط هنا

Local Detection of Quantum Correlations with a Single Trapped Ion

349   0   0.0 ( 0 )
 نشر من قبل Manuel Gessner
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As one of the most striking features of quantum mechanics, quantum correlations are at the heart of quantum information science. Detection of correlations usually requires access to all the correlated subsystems. However, in many realistic scenarios this is not feasible since only some of the subsystems can be controlled and measured. Such cases can be treated as open quantum systems interacting with an inaccessible environment. Initial system-environment correlations play a fundamental role for the dynamics of open quantum systems. Following a recent proposal, we exploit the impact of the correlations on the open-system dynamics to detect system-environment quantum correlations without accessing the environment. We use two degrees of freedom of a trapped ion to model an open system and its environment. The present method does not require any assumptions about the environment, the interaction or the initial state and therefore provides a versatile tool for the study of quantum systems.



قيم البحث

اقرأ أيضاً

We introduce a measurement scheme that utilizes a single ion as a local field probe. The ion is confined in a segmented Paul trap and shuttled around to reach different probing sites. By the use of a single atom probe, it becomes possible characteriz ing fields with spatial resolution of a few nm within an extensive region of millimeters. We demonstrate the scheme by accurately investigating the electric fields providing the confinement for the ion. For this we present all theoretical and practical methods necessary to generate these potentials. We find sub-percent agreement between measured and calculated electric field values.
We demonstrate a new method for the direct measurement of atomic dipole transition matrix elements based on techniques developed for quantum information purposes. The scheme consists of measuring dispersive and absorptive off-resonant light-ion inter actions and is applicable to many atomic species. We determine the dipole matrix element pertaining to the Ca II H line, i.e. the 4$^2$S$_{1/2} leftrightarrow $ 4$^2$P$_{1/2}$ transition of $^{40}$Ca$^+$, for which we find the value 2.8928(43) ea$_0$. Moreover, the method allows us to deduce the lifetime of the 4$^2$P$_{1/2}$ state to be 6.904(26) ns, which is in agreement with predictions from recent theoretical calculations and resolves a longstanding discrepancy between calculated values and experimental results.
The hybrid approach to quantum computation simultaneously utilizes both discrete and continuous variables which offers the advantage of higher density encoding and processing powers for the same physical resources. Trapped ions, with discrete interna l states and motional modes which can be described by continuous variables in an infinite dimensional Hilbert space, offer a natural platform for this approach. A nonlinear gate for universal quantum computing can be implemented with the conditional beam splitter Hamiltonian $|erangle langle e| ( a^{dagger} b + a b^{dagger})$ that swaps the quantum states of two motional modes, depending on the ions internal state. We realize such a gate and demonstrate its applications for quantum state overlap measurements, single-shot parity measurement, and generation of NOON states.
Modern computation relies crucially on modular architectures, breaking a complex algorithm into self-contained subroutines. A client can then call upon a remote server to implement parts of the computation independently via an application programming interface (API). Present APIs relay only classical information. Here we implement a quantum API that enables a client to estimate the absolute value of the trace of a server-provided unitary $U$. We demonstrate that the algorithm functions correctly irrespective of what unitary $U$ the server implements or how the server specifically realizes $U$. Our experiment involves pioneering techniques to coherently swap qubits encoded within the motional states of a trapped Yb ion, controlled on its hyperfine state. This constitutes the first demonstration of modular computation in the quantum regime, providing a step towards scalable, parallelization of quantum computation.
We investigate the dynamics of an ion sympathetically cooled by another laser-cooled ion or small ion crystal. To this end, we develop simple models of the cooling dynamics in the limit of weak Coulomb interactions. Experimentally, we create a two-io n crystal of Ca$^+$ and Al$^+$ by photo-ionization of neutral atoms produced by laser ablation. We characterize the velocity distribution of the laser-ablated atoms crossing the trap by time-resolved fluorescence spectroscopy. We observe neutral atom velocities much higher than the ones of thermally heated samples and find as a consequence long sympathethic cooling times before crystallization occurs. Our key result is a new technique for detecting the loading of an initially hot ion with energy in the eV range by monitoring the motional state of a Doppler-cooled ion already present in the trap. This technique not only detects the ion but also provides information about dynamics of the sympathetic cooling process.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا