ترغب بنشر مسار تعليمي؟ اضغط هنا

First-principle study of octahedral tilting and Ferroelectric like transition in metallic LiOsO3

365   0   0.0 ( 0 )
 نشر من قبل Bog Kim
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The octahedral tilting and ferroelectric-like structural transition of LiOsO3 metallic perovskite [Nature Materials 12, 1024 (2013)] was examined using first-principles density-functional theory. In LiOsO3, a-a-a- octahedral titling mode is responsible for the cubic to rhombohedral structural transition, which is stable phase at room temperature. At low temperatures, a non-centrosymmetric transition to a rhombohedra phase was realized due to zone center phonon softening. The phase transition behavior of LiOsO3 can be explained fully by density functional calculations and phonon calculations. The electronic structure and Fermi surface changes due to the electron lattice coupling effect are also presented. The carrier density of state across the phase transition is associated with the resistivity, heat capacity, and susceptibility.



قيم البحث

اقرأ أيضاً

LiOsO3 is one of the first materials identified in a recent literature as a polar metal, a class of materials that are simultaneously noncentrosymmetric and metallic. In this work, the linear and nonlinear optical susceptibility of LiOsO3 is studied by means of ellipsometry and optical second harmonic generation (SHG). Strong optical birefringence is observed using spectroscopic ellipsometry. The nonlinear optical susceptibility extracted from SHG polarimetry reveals that the tensor components are of the same magnitude as in isostructural insulator LiNbO3, except the component along the polar axis d33, which is suppressed by an order of magnitude. Temperature-dependent SHG measurements in combination with Raman spectroscopy indicate a continuous order-disorder type polar phase transition at 140 K. Linear and nonlinear optical microscopy techniques reveal 109 deg/71 deg ferroelastic domain walls, like in other trigonal ferroelectrics. No 180 deg polar domain walls are observed to emerge across the phase transition.
148 - Hyunsu Sim , Bog G. Kim 2013
The effects of octahedral tilting of RbANb2O7 (A = Bi, Nd) compounds was studied using density-functional theory. In this compound, the structural phase transition was correlated with two octahedral tilting modes (a-a-c0 tilting and a0a0c+ tilting), and magnitude of the octahedral tilting mode was analyzed in the optimized structure. The theoretical results correlated well with the recent experimental results on the ferroelectricity of RbBiNb2O7. The hybrid improper ferroelectricity resulting from the coupling of two octahedral tilting modes and off center displacement mode was analyzed by group theory and symmetry mode analysis. The detailed relationship of the tilting modes to the structural phase transition and the detailed physical properties of ferroelectricity are also presented.
339 - H. M. Liu , Y. P. Du , Y. L. Xie 2014
As the first well-documented example of the ferroelectric metal, LiOsO3 has received extensive research attention recently. Using density-functional calculations, we perform a systematic study for LiOsO3. We address the controversy about the depth of the double well in the potential surface, and propose that the ferroelectric transition is order-disorder like. Moreover, we unambiguously demonstrate that the electric screening in this compound is highly anisotropic, and there is still unscreened dipole-dipole interaction in one special direction which results in the long range ferroelectric order despite the metallic nature of LiOsO3.
132 - Hyunsu Sim , 2013
The effect of the octahedral tilting of ASnO3 (A = Ca, Sr, Ba) parent compound and bi-color ASnO3/BSnO3 superlattice (A, B = Ca, Sr, Ba) was predicted from density-functional theory. In the ASnO3 parent compound, the structural phase transition as a function of the A-site cation size was correlated with the magnitude of the two octahedral tilting modes (a-a-c0 tilting and a0a0c+ tilting). The magnitude of the octahedral tilting modes in the superlattices was analyzed quantitatively and found to be associated with that of the constituent parent materials. The ASnO3/BSnO3 superlattices showed hybrid improper ferroelectricity resulting from the coupling of two octahedral tilting modes (a-a-c0 tilting and a0a0c+ tilting), which are also responsible for the structural phase transition from a tetragonal to orthorhombic phase. The ferroelectricity due to A-site mirror symmetry breaking is a secondary order parameter for an orthorhombic phase transition in the bi-color superlattice and is related to the {Gamma}5- symmetry mode. The coupling between the tilting modes and ferroelectric mode in the bi-color superlattice of ASnO3/BSnO3 was analyzed by group theory and symmetry mode analysis.
Metals cannot exhibit ferroelectricity because static internal electric fields are screened by conduction electrons, but in 1965, Anderson and Blount predicted the possibility of a ferroelectric metal, in which a ferroelectric-like structural transit ion occurs in the metallic state. Up to now, no clear example of such a material has been identified. Here we report on a centrosymmetric (R-3c) to non-centrosymmetric (R3c) transition in metallic LiOsO3 that is structurally equivalent to the ferroelectric transition of LiNbO3. The transition involves a continuous shift in the mean position of Li+ ions on cooling below 140K. Its discovery realizes the scenario described by Anderson and Blount, and establishes a new class of materials whose properties may differ from those of normal metals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا