ترغب بنشر مسار تعليمي؟ اضغط هنا

Shock Excited Molecules in NGC 1266: ULIRG conditions at the center of a Bulge Dominated Galaxy

334   0   0.0 ( 0 )
 نشر من قبل Eric Pellegrini
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the far infrared spectrum of NGC 1266, a S0 galaxy that contains a massive reservoir of highly excited molecular gas. Using the SPIRE-FTS, we detect the $^{12}$CO ladder up to J=(13-12), [C I] and [N II] lines, and also strong water lines more characteristic of UltraLuminous IR Galaxies (ULIRGs). The 12CO line emission is modeled with a combination of a low-velocity C-shock and a PDR. Shocks are required to produce the H2O and most of the high-J 12CO emission. Despite having an infrared luminosity thirty times less than a typical ULIRG, the spectral characteristics and physical conditions of the ISM of NGC 1266 closely resemble those of ULIRGs, which often harbor strong shocks and large-scale outflows.



قيم البحث

اقرأ أيضاً

111 - K. Alatalo 2014
NGC1266 is a nearby lenticular galaxy that harbors a massive outflow of molecular gas powered by the mechanical energy of an active galactic nucleus (AGN). It has been speculated that such outflows hinder star formation (SF) in their host galaxies, p roviding a form of feedback to the process of galaxy formation. Previous studies, however, indicated that only jets from extremely rare, high power quasars or radio galaxies could impart significant feedback on their hosts. Here we present detailed observations of the gas and dust continuum of NGC1266 at millimeter wavelengths. Our observations show that molecular gas is being driven out of the nuclear region at $dot{M}_{rm out} approx 110 M_odot$ yr$^{-1}$, of which the vast majority cannot escape the nucleus. Only 2 $M_odot$ yr$^{-1}$ is actually capable of escaping the galaxy. Most of the molecular gas that remains is very inefficient at forming stars. The far-infrared emission is dominated by an ultra-compact ($lesssim50$pc) source that could either be powered by an AGN or by an ultra-compact starburst. The ratio of the SF surface density ($Sigma_{rm SFR}$) to the gas surface density ($Sigma_{rm H_2}$) indicates that SF is suppressed by a factor of $approx 50$ compared to normal star-forming galaxies if all gas is forming stars, and $approx$150 for the outskirt (98%) dense molecular gas if the central region is is powered by an ultra-compact starburst. The AGN-driven bulk outflow could account for this extreme suppression by hindering the fragmentation and gravitational collapse necessary to form stars through a process of turbulent injection. This result suggests that even relatively common, low-power AGNs are able to alter the evolution of their host galaxies as their black holes grow onto the M-$sigma$ relation.
66 - Th. Boller , L.C. Gallo , D. Lutz 2002
In this paper we report on an XMM-Newton observation of the ultraluminous infrared QSO Mrk 1014. The X-ray observation reveals a power-law dominated (photon index of about 2.2) spectrum with a slight excess in the soft energy range. AGN and starburst emission models fit the soft excess emission equally well, however, the most plausible explanation is an AGN component as the starburst model parameter, temperature and luminosity, appear physically unrealistic. The mean luminosity of Mrk 1014 is about 2 times 10^44 erg s^-1. We have also observed excess emission at energies greater than 5 keV. This feature could be attributed to a broadened and redshifted iron complex, but deeper observations are required to constrain its origin. The light curve shows small scale variability over the 11 ks observation. There is no evidence of intrinsic absorption in Mrk 1014. The X-ray observations support the notion of an AGN dominated central engine. We establish the need for a longer observation to constrain more precisely the nature of the X-ray components.
We study structural properties of spectroscopically confirmed massive quiescent galaxies at $zapprox 3$ with one of the first sizeable samples of such sources, made of ten $10.8<log(M_{star}/M_{odot})<11.3$ galaxies at $2.4 < z < 3.2$ in the COSMOS f ield whose redshifts and quiescence are confirmed by HST grism spectroscopy. Although affected by a weak bias toward younger stellar populations, this sample is deemed to be largely representative of the majority of the most massive and thus intrinsically rarest quiescent sources at this cosmic time. We rely on targeted HST/WFC3 observations and fit Sersic profiles to the galaxy surface brightness distributions at $approx 4000$ angstrom restframe. We find typically high Sersic indices and axis ratios (medians $approx 4.5$ and $0.73$, respectively) suggesting that, at odds with some previous results, the first massive quiescent galaxies may largely be already bulge-dominated systems. We measure compact galaxy sizes with an average of $approx 1.4$kpc at $log(M_{star}/M_{odot})approx 11.2$, in good agreement with the extrapolation at the highest masses of previous determinations of the stellar mass - size relation of quiescent galaxies, and of its redshift evolution, from photometrically selected samples at lower and similar redshifts. This work confirms the existence of a population of compact, bulge dominated, massive, quiescent sources at $zapprox 3$, providing one of the first statistical estimates of their structural properties, and further constraining the early formation and evolution of the first quiescent galaxies.
120 - A. Cardullo 2009
A large fraction of otherwise normal galaxies shows a weak nuclear activity. One of the signatures of the low-luminosity active galactic nuclei (LLAGNs) is the ultraviolet variability which was serendipitously discovered in the center of some low-ion ization nuclear emission-line region (LINER) galaxies. There is a pressing need to acquire better statistics about UV flaring and variability in galaxy nuclei, both in terms of the number and monitoring of targets. The Science Data Archive of the Hubble Space Telescope was queried to find all the elliptical galaxies with UV images obtained in different epochs with the Wide Field Planetary Camera 2 (WFPC2) and possibly with nuclear spectra obtained with the Space Telescope Imaging Spectrograph (STIS) in the region of the Halpha emission line. These data were found only for the elliptical radiogalaxy NGC 4278. The UV flux of the nuclear source of NGC 4278 was measured by means of aperture photometry on the WFPC2/F218W images obtained between June 1994 and January 1995. The mass of the central supermassive black hole (SBH) was estimated by measuring the broad components of the emission lines observed in the STIS/G750M spectrum and assuming that the gas is uniformly distributed in a sphere. The nucleus of NGC 4278 hosts a barely resolved but strongly variable UV source. Its UV luminosity increased by a factor of 1.6 in a period of 6 months. The amplitude and scale time of the UV flare in NGC 4278 are remarkably similar to those of the brightest UV nuclear transients which were earlier found in other LLAGNs. The mass of the SBH was found to be in the range between 7x10^7 and 2x10^9 M_sun. This is in agreement with previous findings based on different assumptions about the gas distribution and with the predictions based on the galaxy velocity dispersion.
We present optical VLT/MUSE integral field spectroscopy data of the merging galaxy NGC 1487. We use fitting techniques to study the ionized gas emission of this merger and its main morphological and kinematical properties. We measured flat and someti mes inverted oxygen abundance gradients in the subsystems composing NGC 1487, explained by metal mixing processes common in merging galaxies. We also measured widespread star-forming bursts, indicating that photoionisation by stars is the primary ionization source of the galaxy. The kinematic map revealed a rotating pattern in the gas in the northern tail of the system, suggesting that the galaxy may be in the process of rebuilding a disc. The gas located in the central region has larger velocity dispersion ($sigmaapprox 50$ km s$^{-1}$) than the remaining regions, indicating kinematic heating, possibly owing to the ongoing interaction. Similar trends were, however, not observed in the stellar velocity-dispersion map, indicating that the galaxy has not yet achieved equilibrium, and the nebular and stellar components are still kinematically decoupled. Based on all our measurements and findings, and specially on the mass estimates, metallicity gradients and velocity fields of the system, we propose that NGC 1487 is the result of an ongoing merger event involving smallish dwarf galaxies within a group, in a pre-merger phase, resulting in a relic with mass and physical parameters similar to a dwarf galaxy. Thus, we may be witnessing the formation of a dwarf galaxy by merging of smaller clumps at z=0.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا