ترغب بنشر مسار تعليمي؟ اضغط هنا

A wide search for obscured Active Galactic Nuclei using XMM-Newton and WISE

309   0   0.0 ( 0 )
 نشر من قبل Manolis Rovilos
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. Rovilos




اسأل ChatGPT حول البحث

We use a combination of the XMM-Newton serendipitous X-ray survey with the optical SDSS, and the infrared WISE all-sky survey in order to check the efficiency of the low X-ray to infrared luminosity selection method in finding heavily obscured AGN. We select sources in the 2-8 keV X-ray band which have a redshift determination in the SDSS catalogue. We match this sample with the WISE catalogue, and fit the SEDs of the 2844 sources which have three, or more, photometric data-points in the infrared. We then select the heavily obscured AGN candidates by comparing their 12 micron AGN luminosity to the observed 2-10 keV X-ray luminosity and their expected intrinsic relation. With this approach we find 20 candidates, and we examine their X-ray and optical spectra. Of the 20 initial candidates, we find nine (64%; out of the 14, for which X-ray spectra could be fit) based on the X-ray spectra, and seven (78%; out of the nine detected spectroscopically in the SDSS) based on the [OIII] line fluxes. Combining all criteria, we determine the final number of heavily obscured AGN to be 12-19, and the number of Compton-thick AGN to be 2-5, showing that the method is reliable in finding obscured AGN, but not Compton-thick. However those numbers are smaller than what would be expected from X-ray background population synthesis models, which demonstrates how the optical-infrared selection and the scatter of the L_x-L_MIR relation introduced by observational constraints limit the efficiency of the method. Finally, we test popular obscured AGN selection methods based on mid-infrared colours, and find that the probability of an AGN to be selected by its mid-infrared colours increases with the X-ray luminosity. However, a selection scheme based on a relatively low X-ray luminosity and mid-infrared colours characteristic of QSOs would not select ~25% of the heavily obscured AGN of our sample. (abridged)



قيم البحث

اقرأ أيضاً

We study the comoving space density of X-ray-selected luminous active galactic nuclei (AGNs) and the obscured AGN fraction at high redshifts ($3 < z < 5$) in the Subaru/{it XMM-Newton} Deep Survey (SXDS) field. From an X-ray source catalog with high completeness of optical identification thanks to deep optical images, we select a sample of 30 AGNs at $z > 3$ with intrinsic (de-absorbed and rest-frame 2--10 keV) luminosities of $L_{rm X} = 10^{44-45}$ erg s$^{-1}$ detected in the 0.5--2 keV band, consisting of 20 and 10 objects with spectroscopic and photometric redshifts, respectively. Utilizing the $1/V_{rm max}$ method, we confirm that the comoving space density of luminous AGNs decreases with redshift above $z > 3$. When combined with the {it Chandra}-COSMOS result of Civano et al. (2011), the density decline of AGNs with $L_{rm X} = 10^{44-45}$ erg s$^{-1}$ is well represented by a power law of $(1 + z)^{-6.2 pm 0.9}$. We also determine the fraction of X-ray obscured AGNs with $N_{rm H} > 10^{22}$ cm$^{-2}$ in the Compton-thin population to be 0.54$^{+0.17}_{-0.19}$, by carefully taking into account observational biases including the effects of photon statistics for each source. This result is consistent with an independent determination of the type-2 AGN fraction based on optical properties, for which the fraction is found to be 0.59$pm$0.09. Comparing our result with that obtained in the local Universe, we conclude that the obscured fraction of luminous AGNs increases significantly from $z=0$ to $z>3$ by a factor of 2.5$pm$1.1.
131 - Ryan C. Hickox 2018
Active Galactic Nuclei (AGN) are powered by the accretion of material onto a supermassive black hole (SMBH), and are among the most luminous objects in the Universe. However, the huge radiative power of most AGN cannot be seen directly, as the accret ion is hidden behind gas and dust that absorbs many of the characteristic observational signatures. This obscuration presents an important challenge for uncovering the complete AGN population and understanding the cosmic evolution of SMBHs. In this review we describe a broad range of multi-wavelength techniques that are currently employed to identify obscured AGN, and assess the reliability and completeness of each technique. We follow with a discussion of the demographics of obscured AGN activity, explore the nature and physical scales of the obscuring material, and assess the implications of obscured AGN for observational cosmology. We conclude with an outline of the prospects for future progress from both observations and theoretical models, and highlight some of the key outstanding questions.
With this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the COSMOS field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by AGN-dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy sigma_(Delta z/(1+z_spec)) sim0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 sq. deg.of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by Delta z>0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry H_AB=24 mag. We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together with the number and the depth of the available bands influence the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGN, such as eROSITA at X-ray energies and ASKAP/EMU in the radio band.
Stern et al.(2012) presented a study of WISE selection of AGN in the 2 deg^2 COSMOS field, finding that a simple criterion W1-W2>=0.8 provides a highly reliable and complete AGN sample for W2<15.05, where the W1 and W2 passbands are centered at 3.4 a nd 4.6 microns, respectively. Here we extend this study using the larger 9 deg^2 NOAO Deep Wide-Field Survey Bootes field which also has considerably deeper WISE observations than the COSMOS field, and find that this simple color-cut significantly loses reliability at fainter fluxes. We define a modified selection criterion combining the W1-W2 color and the W2 magnitude to provide highly reliable or highly complete AGN samples for fainter WISE sources. In particular, we define a color-magnitude cut that finds 130+/-4 deg^-2 AGN candidates for W2<17.11 with 90% reliability. Using the extensive UV through mid-IR broad-band photometry available in this field, we study the spectral energy distributions of WISE AGN candidates. As expected, the WISE AGN selection is biased towards objects where the AGN dominates the bolometric luminosity output, and that it can identify highly obscured AGN. We study the distribution of reddening in the AGN sample and discuss a formalism to account for sample incompleteness based on the step-wise maximum-likelihood method of Efstathiou et al.(1988). The resulting dust obscuration distributions depend strongly on AGN luminosity, consistent with the trend expected for a Simpson (2005) receding torus. At L_AGN~3x10^44 erg/s, 29+/-7% of AGN are observed as Type 1, while at ~4x10^45 erg/s the fraction is 64+/-13%. The distribution of obscuration values suggests that dust in the torus is present as both a diffuse medium and in optically thick clouds.
141 - M. Brusa 2010
We report the final optical identifications of the medium-depth (~60 ksec), contiguous (2 deg^2) XMM-Newton survey of the COSMOS field. XMM-Newton has detected ~800 X-ray sources down to limiting fluxes of ~5x10^{-16}, ~3x10^{-15}, and ~7x10^{-15} er g/cm2/s in the 0.5-2 keV, 2-10 keV and 5-10 keV bands, respectively. The work is complemented by an extensive collection of multi-wavelength data from 24 micron to UV, available from the COSMOS survey, for each of the X-ray sources, including spectroscopic redshifts for ~50% of the sample, and high-quality photometric redshifts for the rest. The XMM and multiwavelength flux limits are well matched: 1760 (98%) of the X-ray sources have optical counterparts, 1711 (~95%) have IRAC counterparts, and 1394 (~78%) have MIPS 24micron detections. Thanks to the redshift completeness (almost 100%) we were able to constrain the high-luminosity tail of the X-ray luminosity function confirming that the peak of the number density of logL_X>44.5 AGN is at z~2. Spectroscopically-identified obscured and unobscured AGN, as well as normal and starforming galaxies, present well-defined optical and infrared properties. We devised a robust method to identify a sample of ~150 high redshift (z>1), obscured AGN candidates for which optical spectroscopy is not available. We were able to determine that the fraction of the obscured AGN population at the highest (L_X>10^{44} erg s^{-1}) X-ray luminosity is ~15-30% when selection effects are taken into account, providing an important observational constraint for X-ray background synthesis. We studied in detail the optical spectrum and the overall spectral energy distribution of a prototypical Type 2 QSO, caught in a stage transitioning from being starburst dominated to AGN dominated, which was possible to isolate only thanks to the combination of X-ray and infrared observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا