We model the dynamical evolution of star forming regions with a wide range of initial properties. We follow the evolution of the regions substructure using the Q-parameter, we search for dynamical mass segregation using the Lambda_MSR technique, and we also quantify the evolution of local density around stars as a function of mass using the Sigma_LDR method. The amount of dynamical mass segregation measured by Lambda_MSR is generally only significant for subvirial and virialised, substructured regions - which usually evolve to form bound clusters. The Sigma_LDR method shows that massive stars attain higher local densities than the median value in all regions, even those that are supervirial and evolve to form (unbound) associations. We also introduce the Q-Sigma_LDR plot, which describes the evolution of spatial structure as a function of mass-weighted local density in a star forming region. Initially dense (>1000 stars pc^{-2}), bound regions always have Q >1, Sigma_LDR > 2 after 5Myr, whereas dense unbound regions always have Q < 1, Sigma_LDR > 2 after 5Myr. Less dense regions (<100 stars pc^{-2}) do not usually exhibit Sigma_LDR > 2 values, and if relatively high local density around massive stars arises purely from dynamics, then the Q-Sigma_LDR plot can be used to estimate the initial density of a star forming region.