ﻻ يوجد ملخص باللغة العربية
Context. The growth process of dust particles in protoplanetary disks can be modeled via numerical dust coagulation codes. In this approach, physical effects that dominate the dust growth process often must be implemented in a parameterized form. Due to a lack of these parameterizations, existing studies of dust coagulation have ignored the effects a hydrodynamical gas flow can have on grain growth, even though it is often argued that the flow could significantly contribute either positively or negatively to the growth process. Aims. We intend to provide a quantification of hydrodynamical effects on the growth of dust particles, such that these effects can be parameterized and implemented in a dust coagulation code. Methods. We numerically integrate the trajectories of small dust particles in the flow of disk gas around a proto-planetesimal, sampling a large parameter space in proto-planetesimal radii, headwind velocities, and dust stopping times. Results. The gas flow deflects most particles away from the proto-planetesimal, such that its effective collisional cross section, and therefore the mass accretion rate, is reduced. The gas flow however also reduces the impact velocity of small dust particles onto a proto-planetesimal. This can be beneficial for its growth, since large impact velocities are known to lead to erosion. We also demonstrate why such a gas flow does not return collisional debris to the surface of a proto-planetesimal. Conclusions. We predict that a laminar hydrodynamical flow around a proto-planetesimal will have a significant effect on its growth. However, we cannot easily predict which result, the reduction of the impact velocity or the sweep-up cross section, will be more important. Therefore, we provide parameterizations ready for implementation into a dust coagulation code.
We present the first 2D hydrodynamical finite volume simulations in which dust is fully coupled with the gas, including its back-reaction onto it, and at the same time the dust size is evolving according to coagulation and fragmentation based on a su
The growth of solids from sub-micron to millimeter and centimeter sizes is the early step toward the formation of planets inside protoplanetary disks (PPDs). However, such processes and their potential impact on the later stages of solid growth are s
We present a new instability driven by a combination of coagulation and radial drift of dust particles. We refer to this instability as ``coagulation instability and regard it as a promising mechanism to concentrate dust particles and assist planetes
Coagulation of dust aggregates plays an important role in the formation of planets and is of key importance to the evolution of protoplanetary disks (PPDs). Characteristics of dust, such as the diversity of particle size, porosity, charge, and the ma
ALMA has revolutionized our view of protoplanetary disks, revealing structures such as gaps, rings and asymmetries that indicate dust trapping as an important mechanism in the planet formation process. However, the high resolution images have also sh