ترغب بنشر مسار تعليمي؟ اضغط هنا

A Bcool magnetic snapshot survey of solar-type stars

164   0   0.0 ( 0 )
 نشر من قبل Stephen Marsden C
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stellar magnetic field measurements obtained from spectropolarimetry offer key data for activity and dynamo studies, and we present the results of a major high-resolution spectropolarimetric Bcool project magnetic snapshot survey of 170 solar-type stars from observations with the Telescope Bernard Lyot and the Canada-France-Hawaii Telescope. For each target star a high signal-to-noise circularly polarised Stokes V profile has been obtained using Least-Squares Deconvolution, and used to detect surface magnetic fields and measure the corresponding mean surface longitudinal magnetic field ($B_{l}$). Chromospheric activity indicators were also measured. Surface magnetic fields were detected for 67 stars, with 21 of these stars classified as mature solar-type stars, a result that increases by a factor of four the number of mature solar-type stars on which magnetic fields have been observed. In addition, a magnetic field was detected for 3 out of 18 of the subgiant stars surveyed. For the population of K-dwarfs the mean value of $B_{l}$ ($|B_{l}|_{mean}$) was also found to be higher (5.7 G) than $|B_{l}|_{mean}$ measured for the G-dwarfs (3.2 G) and the F-dwarfs (3.3 G). For the sample as a whole $|B_{l}|_{mean}$ increases with rotation rate and decreases with age, and the upper envelope for $|B_{l}|$ correlates well with the observed chromospheric emission. Stars with a chromospheric S-index greater than about 0.2 show a high magnetic field detection rate and so offer optimal targets for future studies. This survey constitutes the most extensive spectropolarimetric survey of cool stars undertaken to date, and suggests that it is feasible to pursue magnetic mapping of a wide range of moderately active solar-type stars to improve understanding of their surface fields and dynamos.



قيم البحث

اقرأ أيضاً

97 - R. A. Garcia , J. Ballot 2019
Until the last few decades, investigations of stellar interiors had been restricted to theoretical studies only constrained by observations of their global properties and external characteristics. However, in the last thirty years the field has been revolutionized by the ability to perform seismic investigations of stellar interiors. This revolution begun with the Sun, where helioseismology has been yielding information competing with what can be inferred about the Earths interior from geoseismology. The last two decades have witnessed the advent of asteroseismology of solar-like stars, thanks to a dramatic development of new observing facilities providing the first reliable results on the interiors of distant stars. The coming years will see a huge development in this field. In this review we focus on solar-type stars, i.e., cool main-sequence stars where oscillations are stochastically excited by surface convection. After a short introduction and a historical overview of the discipline, we review the observational techniques generally used, and we describe the theory behind stellar oscillations in cool main-sequence stars. We continue with a complete description of the normal mode analyses through which it is possible to extract the physical information about the structure and dynamics of the stars. We then summarize the lessons that we have learned and discuss unsolved issues and questions that are still unanswered.
Solar-type stars are born with relatively rapid rotation and strong magnetic fields. Through a process known as magnetic braking, the rotation slows over time as stellar winds gradually remove angular momentum from the system. The rate of angular mom entum loss depends sensitively on the magnetic morphology, with the dipole field exerting the largest torque on the star. Recent observations suggest that the efficiency of magnetic braking may decrease dramatically in stars near the middle of their main-sequence lifetimes. One hypothesis to explain this reduction in efficiency is a shift in magnetic morphology from predominantly larger to smaller spatial scales. We aim to test this hypothesis with spectropolarimetric measurements of two stars that sample chromospheric activity levels on opposite sides of the proposed magnetic transition. As predicted, the more active star (HD 100180) exhibits a significant circular polarization signature due to a non-axisymmetric large-scale magnetic field, while the less active star (HD 143761) shows no significant signal. We identify analogs of the two stars among a sample of well-characterized Kepler targets, and we predict that the asteroseismic age of HD 143761 from future TESS observations will substantially exceed the age expected from gyrochronology. We conclude that a shift in magnetic morphology likely contributes to the loss of magnetic braking in middle-aged stars, which appears to coincide with the shutdown of their global dynamos.
The surface rotation rates of young solar-type stars decrease rapidly with age from the end of the pre-main sequence though the early main sequence. This suggests that there is also an important change in the dynamos operating in these stars, which s hould be observable in their surface magnetic fields. Here we present early results in a study aimed at observing the evolution of these magnetic fields through this critical time period. We are observing stars in open clusters and stellar associations to provide precise ages, and using Zeeman Doppler Imaging to characterize the complex magnetic fields. Presented here are results for six stars, three in the in the beta Pic association (~10 Myr old) and three in the AB Dor association (~100 Myr old).
Surface rotation rates of young solar-type stars display drastic changes at the end of the pre-main sequence through the early main sequence. This may trigger corresponding changes in the magnetic dynamos operating in these stars, which ought to be o bservable in their surface magnetic fields. We present here the first results of an observational effort aimed at characterizing the evolution of stellar magnetic fields through this critical phase. We observed stars from open clusters and associations, which range from 20 to 600 Myr, and used Zeeman Doppler Imaging to characterize their complex magnetic fields. We find a clear trend towards weaker magnetic fields for older ages, as well as a tight correlation between magnetic field strength and Rossby number over this age range. Comparing to results for younger T Tauri stars, we observe a very significant change in magnetic strength and geometry, as the radiative core develops during the late pre-main sequence.
The properties of the acoustic modes are sensitive to magnetic activity. The unprecedented long-term Kepler photometry, thus, allows stellar magnetic cycles to be studied through asteroseismology. We search for signatures of magnetic cycles in the se ismic data of Kepler solar-type stars. We find evidence for periodic variations in the acoustic properties of about half of the 87 analysed stars. In these proceedings, we highlight the results obtained for two such stars, namely KIC 8006161 and KIC 5184732.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا