ترغب بنشر مسار تعليمي؟ اضغط هنا

Exchange bias up to room temperature in the antiferromagnetic bulk hexagonal Mn3Ge

165   0   0.0 ( 0 )
 نشر من قبل Jin-Feng Qian
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This work reports an exchange bias (EB) effect up to room temperature in the binary intermetallic bulk compound Mn3.04Ge0.96. The sample annealed at 700 K crystallizes in a tetragonal structure with ferromagnetic ordering, whereas, the sample annealed at 1073 K crystallizes in a hexagonal structure with antiferromagnetic ordering. The hexagonal Mn3.04Ge0.96 sample exhibits an EB of around 70 mT at 2 K that continues with a non-zero value up to room temperature. The exchange anisotropy is proposed to be originating from the exchange interaction between the triangular antiferromagnetic host and the embedded ferrimagnetic like clusters. The ferrimagnetic clusters develop when excess Mn atoms occupy empty Ge sites in the original triangular antiferromagnet structure of Mn3Ge.



قيم البحث

اقرأ أيضاً

Thin highly epitaxial BiFeO$_3$ films were prepared on SrTiO$_3$ (100) substrates by reactive magnetron co-sputtering. Detailed MOKE measurements on BiFeO$_3$/Co-Fe bilayers were performed to investigate the exchange bias as a function of the films t hicknesses and Co-Fe stoichiometries. We found a maximum exchange bias of H$_{mathrm{eb}}$=92 Oe and a coercive field of H$_{mathrm{c}}$=89 Oe for a 12.5 nm thick BiFeO$_3$ film with a 2 nm thick Co layer. The unidirectional anisotropy is clearly visible in in-plane rotational MOKE measurements. AMR measurements reveal a strongly increasing coercivity with decreasing temperature, but no significant change in the exchange bias field.
We report the presence of giant spontaneous exchange bias (HSEB) in a hard and soft antiferromagnetic composite of BiFeO3-TbMnO3 (BFO-TMO in 7:3 and 8:2 ratio). The HSEB varies between 5-778Oe, but persists up to room temperature with a maximum near a spin reorientation transition temperature observed from magnetization vs. temperature measurement in Zero-field cooled (ZFC) and Field cooled (FC) modes. Isothermal remnant magnetization measurements at room temperature indicate the presence of an interfacial layer of a 2 dimensional dilute antiferromagnet in a field (2D DAFF). A stable value of the exchange bias has been observed via training effect measurements which signify the role of interfacial exchange coupling in the system. Based on the experimental results we explain the presence of the giant spontaneous exchange bias on the basis of a strong strain-mediated magnetoelectriccoupling induced exchange interaction and the creation of 2D DAFF layer at the interface. Theproperties of this layer are defined by canting and pinning of BFO spins at the interface with TMO due to Fe and Mn interaction. X-ray Magnetic Circular Dichroism (XMCD) confirms the presence of canted antiferromagnetic ordering of BiFeO3, charge transfer between Mn ions and different magnetically coupled layers which play vital role in getting the exchange bias.
180 - X. Marti , I. Fina , C. Frontera 2015
The bistability of ordered spin states in ferromagnets (FMs) provides the magnetic memory functionality. Traditionally, the macroscopic moment of ordered spins in FMs is utilized to write information on magnetic media by a weak external magnetic fiel d, and the FM stray field is used for reading. However, the latest generation of magnetic random access memories demonstrates a new efficient approach in which magnetic fields are replaced by electrical means for reading and writing. This concept may eventually leave the sensitivity of FMs to magnetic fields as a mere weakness for retention and the FM stray fields as a mere obstacle for high-density memory integration. In this paper we report a room-temperature bistable antiferromagnetic (AFM) memory which produces negligible stray fields and is inert in strong magnetic fields. We use a resistor made of an FeRh AFM whose transition to a FM order 100 degrees above room-temperature, allows us to magnetically set different collective directions of Fe moments. Upon cooling to room-temperature, the AFM order sets in with the direction the AFM moments pre-determined by the field and moment direction in the high temperature FM state. For electrical reading, we use an antiferromagnetic analogue of the anisotropic magnetoresistance (AMR). We report microscopic theory modeling which confirms that this archetypical spintronic effect discovered more than 150 years ago in FMs, can be equally present in AFMs. Our work demonstrates the feasibility to realize room-temperature spintronic memories with AFMs which greatly expands the magnetic materials base for these devices and offers properties which are unparalleled in FMs.
We report annealing induced exchange bias in Fe-Cu-Pt based heterostructures with Cu as an intermediate layer (Fe/Cu/Pt heterostructure) and capping layer (Fe/Pt/Cu heterostructure). Exchange bias observed at room temperature (300 K) is found to be d ependent on the annealing temperature. We obtained positive exchange bias of 120 Oe on annealing both the heterostructures at 400 oC, while on annealing these heterostructures at 500 and 600 oC a negative exchange bias of ~ -100 Oe was found. X-ray reflectivity and polarized neutron reflectivity measurements provided evolution of depth dependent structure and magnetic properties of the heterostructures on annealing at different temperatures and revealed coexistence of soft and hard (alloy) magnetic phases across the thickness of the films. Rapid and long range interdiffusion at interfaces on annealing the systems at a temperature above 400 oC resulted into formation of a ternary alloy phase. These results can be understood within the context of a very unusual interface exchange interaction at the interface of hard/soft magnetic phases, which are dependent on the annealing temperature.
Magnetic skyrmions are topological spin textures holding great potential as nanoscale information carriers. Recently, skyrmions have been predicted in antiferromagnets, with key advantages in terms of stability, size and dynamical properties over the ir ferromagnetic analogs. However, their experimental demonstration is lacking. Here we show that skyrmions can be stabilized at zero field and room temperature at the interface of sputtered IrMn thin films exchange-coupled to a ferromagnetic layer. This was realised by replicating the skyrmionic spin texture of the ferromagnet in the antiferromagnet, via annealing above the blocking temperature of the ferromagnet/antiferromagnet bilayer. Using the high-spatial-resolution magnetic microscopy technique XMCD-PEEM, we observe the skyrmions within the IrMn interfacial layer from the XMCD signal of the uncompensated Mn spins at the interface. This result opens up a path for logic and memory devices based on skyrmion manipulation in antiferromagnets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا