ترغب بنشر مسار تعليمي؟ اضغط هنا

Unusual angular dependence of tunneling magneto-Seebeck effect

303   0   0.0 ( 0 )
 نشر من قبل Christian Heiliger
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We find an unusual angular dependence of the tunneling magneto-Seebeck effect (TMS). The conductance shows normally a cosine-dependence with the angle between the magnetizations of the two ferromagnetic leads. In contrast, the angular dependence of the TMS depends strongly on the tunneling magneto resistance (TMR) ratio. For small TMR ratios we obtain also a cosine-dependence whereas for very large TMR ratios the angular dependence approaches a step-like function.



قيم البحث

اقرأ أيضاً

We found a strong influence of the composition of the magnetic material on the temperature dependence of the tunneling magneto-Seebeck effect in $MgO$ based tunnel junctions. We use textit{ab initio} alloy theory to consider different $Fe_xCo_{1-x}$ alloys for the ferromagnetic layer. Even a small change of the composition leads to strong changes in the magnitude or even in the sign of the tunneling magneto-Seebeck effect. This can explain differences between recent experimental results. In addition, changing the barrier thickness from six to ten monolayers of $MgO$ leads also to a non-trivial change of the temperature dependence. Our results emphasize that the tunneling magneto-Seebeck effect depends very crucially and is very sensitive to material parameters and show that further experimental and theoretical investigations are necessary.
We theoretically investigate the Tunneling Anisotropic Magneto-Seebeck effect in a realistically-modeled CoPt|MgO|Pt tunnel junction using coherent transport calculations. For comparison we study the tunneling magneto-Seebeck effect in CoPt|MgO|CoPt as well. We find that the magneto-Seebeck ratio of CoPt|MgO|Pt exceeds that of CoPt|MgO|CoPt for small barrier thicknesses, reaching 175% at room temperature. This result provides a sharp contrast to the magnetoresistance, which behaves oppositely for all barrier thicknesses and differs by one order of magnitude between devices. Here the magnetoresistance results from differences in transmission brought upon by changing the tunnel junctions magnetization configuration. The magneto-Seebeck effect results from variations in asymmetry of the energy-dependent transmission instead. We report that this difference in origin allows for CoPt|MgO|Pt to possess strong thermal magnetic-transport anisotropy.
519 - A. Matos-Abiague , M. Gmitra , 2009
Based on general symmetry considerations we investigate how the dependence of the tunneling anisotropic magnetoresistance (TAMR) on the magnetization direction is determined by the specific form of the spin-orbit coupling field. By extending a phenom enological model, previously proposed for explaining the main trends of the TAMR in (001) ferromagnet/semiconductor/normal-metal magnetic tunnel junctions (MTJs) [J. Moser {it et al.}, Phys. Rev. Lett. 99, 056601 (2007)], we provide a unified qualitative description of the TAMR in MTJs with different growth directions. In particular, we predict the forms of the angular dependence of the TAMR in (001),(110), and (111) MTJs with structure inversion asymmetry and/or bulk inversion asymmetry. The effects of in-plane uniaxial strain on the TAMR are also investigated.
The angular dependence of the thermal transport in insulating or conducting ferromagnets is derived on the basis of the Onsager reciprocity relations applied to a magnetic system. It is shown that the angular dependence of the temperature gradient ta kes the same form as that of the anisotropic magnetoresistance, including anomalous and planar Hall contributions. The measured thermocouple generated between the extremities of the non-magnetic electrode in thermal contact to the ferromagnet follows this same angular dependence. The sign and amplitude of the magneto-voltaic signal is controlled by the difference of the Seebeck coefficients of the thermocouple.
Thermoelectric effects in magnetic tunnel junctions are currently an attractive research topic. Here, we demonstrate that the tunnel magneto-Seebeck effect (TMS) in CoFeB/MgO/CoFeB tunnel junctions can be switched on to a logic 1 state and off to 0 b y simply changing the magnetic state of the CoFeB electrodes. We enable this new functionality of magnetic tunnel junctions by combining a thermal gradient and an electric field. This new technique unveils the bias-enhanced tunnel magneto-Seebeck effect, which can serve as the basis for logic devices or memories in a green information technology with a pure thermal write and read process. Furthermore, the thermally generated voltages that are referred to as the Seebeck effect are well known to sensitively depend on the electronic structure and therefore have been valued in solid-state physics for nearly one hundred years. Here, we lift Seebecks historic discovery from 1821 to a new level of current spintronics. Our results show that the signal crosses zero and can be adjusted by tuning a bias voltage that is applied between the electrodes of the junction; hence, the name of the effect is bias-enhanced tunnel magneto-Seebeck effect (bTMS). Via the spin- and energy-dependent transmission of electrons in the junction, the bTMS effect can be configured using the bias voltage with much higher control than the tunnel magnetoresistance (TMR) and even completely suppressed for only one magnetic configuration, which is either parallel (P) or anti-parallel (AP). This option allows a readout contrast for the magnetic information of -3000% at room temperature while maintaining a large signal for one magnetic orientation. This contrast is much larger than the value that can be obtained using the TMR effect. Moreover, our measurements are a step towards the experimental realization of high TMS ratios, which are predicted for specific Co-Fe compositions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا