ترغب بنشر مسار تعليمي؟ اضغط هنا

Kurtoses and high order cumulants: Insights from resummed perturbation theory

201   0   0.0 ( 0 )
 نشر من قبل Sylvain Mogliacci
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English
 تأليف Sylvain Mogliacci




اسأل ChatGPT حول البحث

Cumulants of conserved charges provide important information about the physics of the quark-gluon plasma around the phase transition region, as they are by construction sensitive to changes in the degrees of freedom of the system. In this brief proceedings contribution, I report on recent results for two such quantities from two different improved perturbative frameworks, as well as discuss their relevance for heavy ion experiments.



قيم البحث

اقرأ أيضاً

We evaluate the second and fourth order quark number susceptibilities in hot QCD using two variations of resummed perturbation theory. On one hand, we carry out a one-loop calculation within hard-thermal-loop perturbation theory, and on the other han d perform a resummation of the four-loop finite density equation of state derived using a dimensionally reduced effective theory. Our results are subsequently compared with recent high precision lattice data, and their agreement thoroughly analyzed.
We perform a detailed analysis of the predictions of resummed perturbation theory for the pressure and the second-, fourth-, and sixth-order diagonal quark number susceptibilities in a hot and dense quark-gluon plasma. First, we present an exact one- loop calculation of the equation of state within hard-thermal-loop perturbation theory (HTLpt) and compare it to a previous one-loop HTLpt calculation that employed an expansion in the ratios of thermal masses and the temperature. We find that this expansion converges reasonably fast. We then perform a resummation of the existing four-loop weak coupling expression for the pressure, motivated by dimensional reduction. Finally, we compare the exact one-loop HTLpt and resummed dimensional reduction results with state-of-the-art lattice calculations and a recent mass-expanded three-loop HTLpt calculation.
325 - Sylvain Mogliacci 2014
In this Ph.D. thesis, the primary goal is to present a recent investigation of the finite density thermodynamics of hot and dense quark-gluon plasma. As we are interested in a temperature regime, in which naive perturbation theory is known to lose it s predictive power, we clearly need to use a refined approach. To this end, we adopt a resummed perturbation theory point of view and employ two different frameworks. We first use hard-thermal-loop perturbation theory (HLTpt) at leading order to obtain the pressure for nonvanishing quark chemical potentials, and next, inspired by dimensional reduction, resum the known four-loop weak coupling expansion for the quantity. We present and analyze our findings for various cumulants of conserved charges. This provides us with information, through correlations and fluctuations, on the degrees of freedom effectively present in the quark-gluon plasma right above the deconfinement transition. Moreover, we compare our results with state-of-the-art lattice Monte Carlo simulations as well as with a recent three-loop mass truncated HTLpt calculation. We obtain very good agreement between the two different perturbative schemes, as well as between them and lattice data, down to surprisingly low temperatures right above the phase transition. We also quantitatively test the convergence of an approximation, which is used in higher order loop calculations in HTLpt. This method based on expansions in mass parameters, is unavoidable beyond leading order, thus motivating our investigation. We find the ensuing convergence to be very fast, validating its use in higher order computations.
112 - Sebastian Schenk 2021
Calculations of high-energy processes involving the production of a large number of particles in weakly-coupled quantum field theories have previously signaled the need for novel non-perturbative behavior or even new physical phenomena. In some scena rios, already tree-level computations may enter the regime of large-order perturbation theory and therefore require a careful investigation. We demonstrate that in scalar quantum field theories with a unique global minimum, where suitably resummed perturbative expansions are expected to capture all relevant physical effects, perturbation theory may still suffer from severe shortcomings in the high-energy regime. As an example, we consider the computation of multiparticle threshold amplitudes of the form $1 to n$ in $varphi^6$ theory with a positive mass term, and show that they violate unitarity of the quantum theory for large $n$, even after the resummation of all leading-$n$ quantum corrections. We further argue that this is a generic feature of scalar field theories with higher-order self-interactions beyond $varphi^4$, thereby rendering the latter unique with respect to its high-energy behavior.
We discuss the Hard Dense Loop resummation at finite quark mass and evaluate the equation of state (EoS) of cold and dense QCD matter in $beta$ equilibrium. The resummation in the quark sector has an effect of lowering the baryon number density and t he EoS turns out to have much smaller uncertainty than the perturbative QCD estimate. Our numerical results favor smooth matching between the EoS from the resummed QCD calculation at high density and the extrapolated EoS from the nuclear matter density region. We also point out that the speed of sound in our EoS slightly exceeds the conformal limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا