ﻻ يوجد ملخص باللغة العربية
We present a series of high-resolution cosmological simulations of galaxy formation to z=0, spanning halo masses ~10^8-10^13 M_sun, and stellar masses ~10^4-10^11. Our simulations include fully explicit treatment of both the multi-phase ISM (molecular through hot) and stellar feedback. The stellar feedback inputs (energy, momentum, mass, and metal fluxes) are taken directly from stellar population models. These sources of stellar feedback, with zero adjusted parameters, reproduce the observed relation between stellar and halo mass up to M_halo~10^12 M_sun (including dwarfs, satellites, MW-mass disks, and small groups). By extension, this leads to reasonable agreement with the stellar mass function for M_star<10^11 M_sun. We predict weak redshift evolution in the M_star-M_halo relation, consistent with current constraints to z>6. We find that the M_star-M_halo relation is insensitive to numerical details, but is sensitive to the feedback physics. Simulations with only supernova feedback fail to reproduce the observed stellar masses, particularly in dwarf and high-redshift galaxies: radiative feedback (photo-heating and radiation pressure) is necessary to disrupt GMCs and enable efficient coupling of later supernovae to the gas. Star formation rates agree well with the observed Kennicutt relation at all redshifts. The galaxy-averaged Kennicutt relation is very different from the numerically imposed law for converting gas into stars in the simulation, and is instead determined by self-regulation via stellar feedback. Feedback reduces star formation rates considerably and produces a reservoir of gas that leads to rising late-time star formation histories significantly different from the halo accretion history. Feedback also produces large short-timescale variability in galactic SFRs, especially in dwarfs. Many of these properties are not captured by common sub-grid galactic wind models.
We use simulations with realistic models for stellar feedback to study galaxy mergers. These high resolution (1 pc) simulations follow formation and destruction of individual GMCs and star clusters. The final starburst is dominated by in situ star fo
We use numerical simulations of isolated galaxies to study the effects of stellar feedback on the formation and evolution of giant star-forming gas clumps in high-redshift, gas-rich galaxies. Such galactic disks are unstable to the formation of bound
We present the discovery of compact, obscured star formation in galaxies at z ~ 0.6 that exhibit >1000 km/s outflows. Using optical morphologies from the Hubble Space Telescope and infrared photometry from the Wide-field Infrared Survey Explorer, we
We consider the effects of different star formation criteria on galactic scales, in high-resolution simulations with explicitly resolved GMCs and stellar feedback. We compare: (1) a self-gravity criterion (based on the local virial parameter and the
Stellar population studies show that low mass galaxies in all environments exhibit stellar halos that are older and more spherically distributed than the main body of the galaxy. In some cases, there is a significant intermediate age component that e