ﻻ يوجد ملخص باللغة العربية
The formation of temporal dissipative solitons in optical microresonators enables compact, high repetition rate sources of ultra-short pulses as well as low noise, broadband optical frequency combs with smooth spectral envelopes. Here we study the influence of the resonator mode spectrum on temporal soliton formation. Using frequency comb assisted diode laser spectroscopy, the measured mode structure of crystalline MgF2 resonators are correlated with temporal soliton formation. While an overal general anomalous dispersion is required, it is found that higher order dispersion can be tolerated as long as it does not dominate the resonators mode structure. Mode coupling induced avoided crossings in the resonator mode spectrum are found to prevent soliton formation, when affecting resonator modes close to the pump laser. The experimental observations are in excellent agreement with numerical simulations based on the nonlinear coupled mode equations, which reveal the rich interplay of mode crossings and soliton formation.
On-chip manipulation of single resonance over broad background comb spectra of microring resonators is indispensable, ranging from tailoring laser emission, optical signal processing to non-classical light generation, yet challenging without scarifyi
We investigate, numerically and experimentally, the effect of thermo-optical (TO) chaos on direct soliton generation (DSG) in microresonators. When the pump laser is scanned from blue to red and then stopped at a fixed wavelength, we find that the so
Soliton crystals are periodic patterns of multi-spot optical fields formed from either time or space entanglements of equally separated identical high-intensity pulses. These specific nonlinear optical structures have gained interest in recent years
The Kerr effect in optical microresonators plays an important role for integrated photonic devices and enables third harmonic generation, four-wave mixing, and the generation of microresonator-based frequency combs. Here we experimentally demonstrate
We analyze the consequences of dissipative heating in driven Kerr microresonators theoretically and numerically, using a thermal Lugiato-Lefever model. We show that thermal sensitivity modifies the stability range of continuous wave in a way that blo