ﻻ يوجد ملخص باللغة العربية
Linear response theory for the density matrix renormalization group (DMRG-LRT) was first presented in terms of the DMRG renormalization projectors [Dorando et al., J. Chem. Phys. 130, 184111 (2009)]. Later, with an understanding of the manifold structure of the matrix product state (MPS) ansatz, which lies at the basis of the DMRG algorithm, a way was found to construct the linear response space for general choices of the MPS gauge in terms of the tangent space vectors [Haegeman et al., Phys. Rev. Lett. 107, 070601 (2011)]. These two developments led to the formulation of the Tamm-Dancoff and random phase approximations (TDA and RPA) for MPS. This work describes how these LRTs may be efficiently implemented through minor modifications of the DMRG sweep algorithm, at a computational cost which scales the same as the ground-state DMRG algorithm. In fact, the mixed canonical MPS form implicit to the DMRG sweep is essential for efficient implementation of the RPA, due to the structure of the second-order tangent space. We present ab initio DMRG-TDA results for excited states of polyenes, the water molecule, and a [2Fe-2S] iron-sulfur cluster.
The purpose of this paper is (i) to present a generic and fully functional implementation of the density-matrix renormalization group (DMRG) algorithm, and (ii) to describe how to write additional strongly-correlated electron models and geometries by
In a Physical Review B paper Chandross and Hicks claim that an analysis of the density-density correlation function in the dimerised Hubbard model of polyacetylene indicates that the optical exciton is bound, and that a previous study by Boman and Bu
We present a linear-response formulation of density cumulant theory (DCT) that provides a balanced and accurate description of many electronic states simultaneously. In the original DCT formulation, only information about a single electronic state (u
The similarities between Hartree-Fock (HF) theory and the density-matrix renormalization group (DMRG) are explored. Both methods can be formulated as the variational optimization of a wave-function ansatz. Linearization of the time-dependent variatio
A distributed-memory parallelization strategy for the density matrix renormalization group is proposed for cases where correlation functions are required. This new strategy has substantial improvements with respect to previous works. A scalability an