We investigate the electrical and magneto-transport properties of Pt-C granular metals prepared by focused-electron-beam induced deposition. In particular, we consider samples close to the metal-insulator-transition obtained from as-grown deposits by means of a low- energy electron irradiation treatment. The temperature dependence of the conductivity shows a lnT behavior with a transition to square root of T at low temperature, as expected for systems in the strong-coupling tunneling regime. The magnetoresistance is positive and is described within the wave-function shrinkage model, normally used for disordered system in the weak-coupling regime. In order to fit the experimental data spin-dependent tunneling has to be taken into account. In the discussion we attribute the origin of the spin-dependency to confinement effects of Pt nano-grains embedded in the carbon matrix.