ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetoresistance of granular Pt-C nanostructures close to the metal-insulator-transition

193   0   0.0 ( 0 )
 نشر من قبل Fabrizio Porrati
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the electrical and magneto-transport properties of Pt-C granular metals prepared by focused-electron-beam induced deposition. In particular, we consider samples close to the metal-insulator-transition obtained from as-grown deposits by means of a low- energy electron irradiation treatment. The temperature dependence of the conductivity shows a lnT behavior with a transition to square root of T at low temperature, as expected for systems in the strong-coupling tunneling regime. The magnetoresistance is positive and is described within the wave-function shrinkage model, normally used for disordered system in the weak-coupling regime. In order to fit the experimental data spin-dependent tunneling has to be taken into account. In the discussion we attribute the origin of the spin-dependency to confinement effects of Pt nano-grains embedded in the carbon matrix.



قيم البحث

اقرأ أيضاً

A high-resolution investigation of the electron spectra close to the metal-to-insulator transition in dynamic mean-field theory is presented. An all-numerical, consistent confirmation of a smooth transition at zero temperature is provided. In particu lar, the separation of energy scales is verified. Unexpectedly, sharp peaks at the inner Hubbard band edges occur in the metallic regime. They are signatures of the important interaction between single-particle excitations and collective modes.
Rigorous electrodynamical simulations based on the nonlinear Drude model are performed to investigate the influence of strong coupling on high harmonic generation by periodic metal gratings. It is shown that a thin dispersive material with a third or der nonlinearity strongly coupled to surface plasmon-polaritons significantly affects even harmonics generated solely by the metal. The physical nature of this effect is explained using a simple analytical model and further supported by numerical simulations. Furthermore, the behavior of the second and third harmonics is investigated as a function of various physical parameters of the model material system, revealing highly complex dynamics. The nonlinear optical response of 2D few-layer WS2 with both second and third order susceptibilities coupled to a periodic plasmonic grating is shown to have a significant effect on the second harmonic generation of the metal.
We study the evolution of magnetoresistance with temperature in thin film bilayers consisting of platinum and the antiferromagnet Cr$_2$O$_3$ with its easy axis out of the plane. We vary the temperature from 20 - 60{deg}C, close to the Neel temperatu re of Cr$_2$O$_3$ of approximately 37{deg}C. The magnetoresistive response is recorded during rotations of the external magnetic field in three mutually orthogonal planes. A large magnetoresistance having a symmetry consistent with a positive spin Hall magnetoresistance is observed in the paramagnetic phase of the Cr$_2$O$_3$, which however vanishes when cooling to below the Neel temperature. Comparing to analogous experiments in a Gd$_3$Ga$_5$O$_{12}$/Pt heterostructure, we conclude that a paramagnetic field induced magnetization in the insulator is not sufficient to explain the observed magnetoresistance. We speculate that the type of magnetic moments at the interface qualitatively impacts the spin angular momentum transfer, with the $3d$ moments of Cr sinking angular momentum much more efficiently as compared to the more localized $4f$ moments of Gd.
We study the local and non-local magnetoresistance of thin Pt strips deposited onto yttrium iron garnet. The local magnetoresistive response, inferred from the voltage drop measured along one given Pt strip upon current-biasing it, shows the characte ristic magnetization orientation dependence of the spin Hall magnetoresistance. We simultaneously also record the non-local voltage appearing along a second, electrically isolated, Pt strip, separated from the current carrying one by a gap of a few 100 nm. The corresponding non-local magnetoresistance exhibits the symmetry expected for a magnon spin accumulation-driven process, confirming the results recently put forward by Cornelissen et al. [1]. Our magnetotransport data, taken at a series of different temperatures as a function of magnetic field orientation, rotating the externally applied field in three mutually orthogonal planes, show that the mechanisms behind the spin Hall and the non-local magnetoresistance are qualitatively different. In particular, the non-local magnetoresistance vanishes at liquid Helium temperatures, while the spin Hall magnetoresistance prevails.
We report the suppression of the magnetic phase transition in La1-xCaxMnO3 close to the localized-to-itinerant electronic transition, i.e. at x = 0.2 and x = 0.5. A new crossover temperature Tf can be defined for these compositions instead of TC. Unl ike in common continuous magnetic phase transition the susceptibility does not diverge at Tf and a spontaneous magnetization cannot be defined below it. We propose that the proximity to the doping-induced metal-insulator transition introduces a random field which breaks up the electronic/magnetic homogeneity of the system and explains these effects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا