ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-sustained activity, bursts, and variability in recurrent networks

208   0   0.0 ( 0 )
 نشر من قبل Marc-Oliver Gewaltig
 تاريخ النشر 2013
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There is consensus in the current literature that stable states of asynchronous irregular spiking activity require (i) large networks of 10 000 or more neurons and (ii) external background activity or pacemaker neurons. Yet already in 1963, Griffith showed that networks of simple threshold elements can be persistently active at intermediate rates. Here, we extend Griffiths work and demonstrate that sparse networks of integrate-and-fire neurons assume stable states of self-sustained asynchronous and irregular firing without external input or pacemaker neurons. These states can be robustly induced by a brief pulse to a small fraction of the neurons, or by short a period of irregular input, and last for several minutes. Self-sustained activity states emerge when a small fraction of the synapses is strong enough to significantly influence the firing probability of a neuron, consistent with the recently proposed long-tailed distribution of synaptic weights. During self-sustained activity, each neuron exhibits highly irregular firing patterns, similar to experimentally observed activity. Moreover, the interspike interval distribution reveals that neurons switch between discrete states of high and low firing rates. We find that self-sustained activity states can exist even in small networks of only a thousand neurons. We investigated networks up to 100 000 neurons. Finally, we discuss the implications of self-sustained activity for learning, memory and signal propagation.



قيم البحث

اقرأ أيضاً

A popular theory of perceptual processing holds that the brain learns both a generative model of the world and a paired recognition model using variational Bayesian inference. Most hypotheses of how the brain might learn these models assume that neur ons in a population are conditionally independent given their common inputs. This simplification is likely not compatible with the type of local recurrence observed in the brain. Seeking an alternative that is compatible with complex inter-dependencies yet consistent with known biology, we argue here that the cortex may learn with an adversarial algorithm. Many observable symptoms of this approach would resemble known neural phenomena, including wake/sleep cycles and oscillations that vary in magnitude with surprise, and we describe how further predictions could be tested. We illustrate the idea on recurrent neural networks trained to model image and video datasets. This framework for learning brings variational inference closer to neuroscience and yields multiple testable hypotheses.
Most nervous systems encode information about stimuli in the responding activity of large neuronal networks. This activity often manifests itself as dynamically coordinated sequences of action potentials. Since multiple electrode recordings are now a standard tool in neuroscience research, it is important to have a measure of such network-wide behavioral coordination and information sharing, applicable to multiple neural spike train data. We propose a new statistic, informational coherence, which measures how much better one unit can be predicted by knowing the dynamical state of another. We argue informational coherence is a measure of association and shared information which is superior to traditional pairwise measures of synchronization and correlation. To find the dynamical states, we use a recently-introduced algorithm which reconstructs effective state spaces from stochastic time series. We then extend the pairwise measure to a multivariate analysis of the network by estimating the network multi-information. We illustrate our method by testing it on a detailed model of the transition from gamma to beta rhythms.
In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of the neural activity, as expected, but it can also promote neural reacti vation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neurons death). However, the random pruning of the connections is able to reverse the action of inhibition, i.e. in a sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of the neurons (neurons rebirth). Thus the number of firing neurons reveals a minimum at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by the neurons with higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving an analytic mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, the system passes from a perfectly regular evolution to an irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.
The abundant recurrent horizontal and feedback connections in the primate visual cortex are thought to play an important role in bringing global and semantic contextual information to early visual areas during perceptual inference, helping to resolve local ambiguity and fill in missing details. In this study, we find that introducing feedback loops and horizontal recurrent connections to a deep convolution neural network (VGG16) allows the network to become more robust against noise and occlusion during inference, even in the initial feedforward pass. This suggests that recurrent feedback and contextual modulation transform the feedforward representations of the network in a meaningful and interesting way. We study the population codes of neurons in the network, before and after learning with feedback, and find that learning with feedback yielded an increase in discriminability (measured by d-prime) between the different object classes in the population codes of the neurons in the feedforward path, even at the earliest layer that receives feedback. We find that recurrent feedback, by injecting top-down semantic meaning to the population activities, helps the network learn better feedforward paths to robustly map noisy image patches to the latent representations corresponding to important visual concepts of each object class, resulting in greater robustness of the network against noises and occlusion as well as better fine-grained recognition.
Task-based modeling with recurrent neural networks (RNNs) has emerged as a popular way to infer the computational function of different brain regions. These models are quantitatively assessed by comparing the low-dimensional neural representations of the model with the brain, for example using canonical correlation analysis (CCA). However, the nature of the detailed neurobiological inferences one can draw from such efforts remains elusive. For example, to what extent does training neural networks to solve common tasks uniquely determine the network dynamics, independent of modeling architectural choices? Or alternatively, are the learned dynamics highly sensitive to different model choices? Knowing the answer to these questions has strong implications for whether and how we should use task-based RNN modeling to understand brain dynamics. To address these foundational questions, we study populations of thousands of networks, with commonly used RNN architectures, trained to solve neuroscientifically motivated tasks and characterize their nonlinear dynamics. We find the geometry of the RNN representations can be highly sensitive to different network architectures, yielding a cautionary tale for measures of similarity that rely representational geometry, such as CCA. Moreover, we find that while the geometry of neural dynamics can vary greatly across architectures, the underlying computational scaffold---the topological structure of fixed points, transitions between them, limit cycles, and linearized dynamics---often appears universal across all architectures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا