ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum criticality and Lifshitz transition in the Ising system CeRu2Si2: Comparison with YbRh2Si2

526   0   0.0 ( 0 )
 نشر من قبل Georg Knebel
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New thermoelectric power (TEP) measurements on prototype heavy-fermion compounds close to magnetic quantum criticality are presented. The highly sensitive technique of TEP is an unique tool to reveal Fermi surface instabilities, referred here as Lifshitz transitions. The first focus is on the Ising CeRu2Si2 series. Doping CeRu2Si2 with Rh produces a decoupling between the first order metamagnetic transition and the pseudo-metamagnetism observed in the pure compound. Comparison is made with the case of YbRh2Si2 which is often considered as the archetype of local quantum criticality by contrast to CeRu2Si2, taken as an example of spin-density wave criticality. Up to now for ferromagnetic materials showing ferromagnetic wings, no simple case appears where the Fermi surface is preserved between the ferromagnetic and paramagnetic phases. An open issue is the consequence of Lifshitz transitions on superconductivity in these multiband systems.



قيم البحث

اقرأ أيضاً

A series of strong anomalies in the thermoelectric power is observed in the heavy fermion compound YbRh$_2$Si$_2$ under the effect of magnetic field varying in the range from 9.5~T to 13~T. We identify these features with a sequence of topological tr ansformations of the sophisticated Fermi surface of this compound, namely a cascade of Lifshitz topological transitions. In order to undoubtedly attribute these anomalies to the specific topological changes of the Fermi surface, we employ the renormalized band method. Basing on its results we suggest a simplified model consisting of the large peripheral Fermi surface sheet and the number of continuously appearing (disappearing) small voids or necks. We account for the multiple electron scattering processes between various components of the Fermi surface, calculate the corresponding scattering times, and, finally, find the magnetic field dependence of the Seebeck coefficient. The obtained analytical expression reproduces reasonably the observed positions of the maxima and minima as well as the overall line shapes and allows us to identify the character of corresponding topological transformations.
Antiferromagnetic quantum spin systems can exhibit a transition between collinear and spiral ground states, driven by frustration. Classically this is a smooth crossover and the crossover point is termed a Lifshitz point. Quantum fluctuations change the nature of the transition. In particular it has been argued previously that in the two-dimensional (2D) case a spin liquid (SL) state is developed in the vicinity of the Lifshitz point, termed a Lifshitz SL. In the present work, using a field theory approach, we solve the Lifshitz quantum phase transition problem for the 2D frustrated XY-model. Specifically, we show that, unlike the SU(2) symmetric Lifshitz case, in the XY-model the SL exists only at the critical point. At zero temperature we calculate nonuniversal critical exponents in the Neel and in the spin spiral state and relate these to properties of the SL. We also solve the transition problem at a finite temperature and discuss the role of topological excitations.
We have measured the thermopower across the metamagnetic transition of the heavy fermion compound CeRu2Si2 at temperatures down to 0.1K and magnetic fields up to 11.5T. We find a large negative enhancement of the thermopower on crossing the metamagne tic field, as well as a sudden change in slope. We argue that this is consistent with the Zeeman-driven deformation of the Fermi surface through a topological transition. The field dependence of the thermopower highlights the discrepancy between thermodynamic and transport properties across the metamagnetic transition.
The heavy fermion system CeNi9Ge4 exhibits a paramagnetic ground state with remarkable features such as: a record value of the electronic specific heat coefficient in systems with a paramagnetic ground state, gamma = C/T simeq 5.5 J/molK^2 at 80 mK, a temperature-dependent Sommerfeld-Wilson ratio, R=chi/gamma, below 1 K and an approximate single ion scaling of the 4f-magnetic specific heat and susceptibility. These features are related to a rather small Kondo energy scale of a few Kelvin in combination with a quasi-quartet crystal field ground state. Tuning the system towards long range magnetic order is accomplished by replacing a few at.% of Ni by Cu or Co. Specific heat, susceptibility and resistivity studies reveal T_N sim 0.2 K for CeNi8CuGe4 and T_N sim 1 K for CeNi8CoGe4. To gain insight whether the transition from the paramagnetic NFL state to the magnetically ordered ground state is connected with a heavy fermion quantum critical point we performed specific heat and ac susceptibility studies and utilized the mu SR technique and quasi-elastic neutron scattering.
78 - Bowen Zhao , Jun Takahashi , 2020
The $S=1/2$ square-lattice $J$-$Q$ model hosts a deconfined quantum phase transition between antiferromagnetic and dimerized (valence-bond solid) ground states. We here study two deformations of this model -- a term projecting staggered singlets as w ell as a modulation of the $J$ terms forming alternating staircases of strong and weak couplings. The first deformation preserves all lattice symmetries. Using quantum Monte Carlo simulations, we show that it nevertheless introduces a second relevant field, likely by producing topological defects. The second deformation induces helical valence-bond order. Thus, we identify the deconfined quantum critical point as a multicritical Lifshitz point -- the end point of the helical phase and also the end point of a line of first-order transitions. The helical-antiferromagnetic transitions form a line of generic deconfined quantum-critical points. These findings extend the scope of deconfined quantum criticality and resolve a previously inconsistent critical-exponent bound from the conformal-bootstrap method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا