ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate tree-level scattering amplitude relations in $U(N)$ non-linear sigma model. We use Cayley parametrization. As was shown in the recent works [23,24] both on-shell amplitudes and off-shell currents with odd points have to vanish under Cayley parametrization. We prove the off-shell $U(1)$ identity and fundamental BCJ relation for even-point currents. By taking the on-shell limits of the off-shell relations, we show that the color-ordered tree amplitudes with even points satisfy $U(1)$-decoupling identity and fundamental BCJ relation, which have the same formations within Yang-Mills theory. We further state that all the on-shell general KK, BCJ relations as well as the minimal-basis expansion are also satisfied by color-ordered tree amplitudes. As a consequence of the relations among color-ordered amplitudes, the total $2m$-point tree amplitudes satisfy DDM form of color decomposition as well as KLT relation.
We describe the kink solitary waves of a massive non-linear sigma model with an ${mathbb S}^2$ sphere as the target manifold. Our solutions form a moduli space of non-relativistic solitary waves in the long wavelength limit of ferromagnetic linear spin chains.
We summarize recent progress on the symmetric subtraction of the Non-Linear Sigma Model in $D$ dimensions, based on the validity of a certain Local Functional Equation (LFE) encoding the invariance of the SU(2) Haar measure under local left transform
We study non-local non-linear sigma models in arbitrary dimension, focusing on the scale invariant limit in which the scalar fields naturally have scaling dimension zero, so that the free propagator is logarithmic. The classical action is a bi-local
We have introduced Faddeev-Niemi type variables for static SU(3) Yang-Mills theory. The variables suggest that a non-linear sigma model whose sigma fields take values in SU(3)/(U(1)xU(1)) and SU(3)/(SU(2)xU(1)) may be relevant to infrared limit of th
The stability of the kinks of the non-linear ${mathbb S}^2$-sigma model discovered in Phys. Rev. Lett. 101(2008)131602 is discussed from several points of view. After a direct estimation of the spectra of the second-order fluctuation operators around