ﻻ يوجد ملخص باللغة العربية
We present the generation of approximated coherent state superpositions - referred to as Schrodinger cat states - by the process of subtracting single photons from picosecond pulsed squeezed states of light at 830 nm. The squeezed vacuum states are produced by spontaneous parametric down-conversion (SPDC) in a periodically poled KTiOPO4 crystal while the single photons are probabilistically subtracted using a beamsplitter and a single photon detector. The resulting states are fully characterized with time-resolved homodyne quantum state tomography. Varying the pump power of the SPDC, we generated different states which exhibit non-Gaussian behavior.
We discuss several methods to produce superpositions of optical coherent states (also known as cat states). Cat states have remarkable properties that could allow them to be powerful tools for quantum information processing and metrology. A number of
We propose related schemes to generate arbitrarily shaped single photons, i.e. photons with an arbitrary temporal profile, and coherent state superpositions using simple optical elements. The first system consists of two coupled cavities, a memory ca
We propose two experimental schemes for producing coherent-state superpositions which approximate different nonclassical states conditionally in traveling optical fields. Although these setups are constructed of a small number of linear optical eleme
Based on N different coherent states with equal weights and phase-space rotation symmetry, we introduce N-headed incoherent superposition states (NHICSSs) and N-headed coherent superposition states (NHCSSs). These N coherent states are associated wit
We propose a technique to prepare coherent superpositions of two nondegenerate quantum states in a three-state ladder system, driven by two simultaneous fields near resonance with an intermediate state. The technique, of potential application to enha