ترغب بنشر مسار تعليمي؟ اضغط هنا

Heisenberg uncertainty for qubit measurements

134   0   0.0 ( 0 )
 نشر من قبل Paul Busch
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Reports on experiments recently performed in Vienna [Erhard et al, Nature Phys. 8, 185 (2012)] and Toronto [Rozema et al, Phys. Rev. Lett. 109, 100404 (2012)] include claims of a violation of Heisenbergs error-disturbance relation. In contrast, we have presented and proven a Heisenberg-type relation for joint measurements of position and momentum [Phys. Rev. Lett. 111, 160405 (2013)]. To resolve the apparent conflict, we formulate here a new general trade-off relation for errors in qubit measurements, using the same concepts as we did in the position-momentum case. We show that the combined errors in an approximate joint measurement of a pair of +/-1 valued observables A,B are tightly bounded from below by a quantity that measures the degree of incompatibility of A and B. The claim of a violation of Heisenberg is shown to fail as it is based on unsuitable measures of error and disturbance. Finally we show how the experiments mentioned may directly be used to test our error inequality.



قيم البحث

اقرأ أيضاً

Being one of the centroidal concepts in quantum theory, the fundamental constraint imposed by Heisenberg uncertainty relations has always been a subject of immense attention and challenging in the context of joint measurements of general quantum mech anical observables. In particular, the recent extension of the original uncertainty relations has grabbed a distinct research focus and set a new ascendent target in quantum mechanics and quantum information processing. In the present work we explore the joint measurements of three incompatible observables, following the basic idea of a newly proposed error trade-off relation. In comparison to the counterpart of two incompatible observables, the joint measurements of three incompatible observables are more complex and of more primal interest in understanding quantum mechanical measurements. Attributed to the pristine idea proposed by Heisenberg in 1927, we develop the error trade-off relations for compatible observables to categorically approximate the three incompatible observables. Implementing these relations we demonstrate the first experimental witness of the joint measurements for three incompatible observables using a single ultracold $^{40}Ca^{+}$ ion in a harmonic potential. We anticipate that our inquisition would be of vital importance for quantum precision measurement and other allied quantum information technologies.
In quantum mechanics, the Heisenberg uncertainty relation presents an ultimate limit to the precision by which one can predict the outcome of position and momentum measurements on a particle. Heisenberg explicitly stated this relation for the predict ion of hypothetical future measurements, and it does not describe the situation where knowledge is available about the system both earlier and later than the time of the measurement. We study what happens under such circumstances with an atomic ensemble containing $10^{11}$ $^{87}text{Rb}$ atoms, initiated nearly in the ground state in presence of a magnetic field. The collective spin observables of the atoms are then well described by canonical position and momentum observables, $hat{x}_A$ and $hat{p}_A$ that satisfy $[hat{x}_A,hat{p}_A]=ihbar$. Quantum non-demolition measurements of $hat{p}_A$ before and of $hat{x}_A$ after time $t$ allow precise estimates of both observables at time $t$. The capability of assigning precise values to multiple observables and to observe their variation during physical processes may have implications in quantum state estimation and sensing.
A Heisenberg uncertainty relation is derived for spatially-gated electric and magnetic field fluctuations. The uncertainty increases for small gating sizes which implies that in confined spaces the quantum nature of the electromagnetic field must be taken into account. Optimizing the state of light to minimize the electric at the expense of the magnetic field, and vice versa should be possible. Spatial confinements and quantum fields may alternatively be realized without gating by interaction of the field with a nanostructure. Possible applications include nonlinear spectroscopy of nanostructures and optical cavities and chiral signals.
223 - Kyunghyun Baek , Wonmin Son 2018
We derive entropic uncertainty relations for successive generalized measurements by using general descriptions of quantum measurement within two {distinctive operational} scenarios. In the first scenario, by merging {two successive measurements} into one we consider successive measurement scheme as a method to perform an overall {composite} measurement. In the second scenario, on the other hand, we consider it as a method to measure a pair of jointly measurable observables by marginalizing over the distribution obtained in this scheme. In the course of this work, we identify that limits on ones ability to measure with low uncertainty via this scheme come from intrinsic unsharpness of observables obtained in each scenario. In particular, for the L{u}ders instrument, disturbance caused by the first measurement to the second one gives rise to the unsharpness at least as much as incompatibility of the observables composing successive measurement.
Various theories that aim at unifying gravity with quantum mechanics suggest modifications of the Heisenberg algebra for position and momentum. From the perspective of quantum mechanics, such modifications lead to new uncertainty relations which are thought (but not proven) to imply the existence of a minimal observable length. Here we prove this statement in a framework of sufficient physical and structural assumptions. Moreover, we present a general method that allows to formulate optimal and state-independent variance-based uncertainty relations. In addition, instead of variances, we make use of entropies as a measure of uncertainty and provide uncertainty relations in terms of min- and Shannon entropies. We compute the corresponding entropic minimal lengths and find that the minimal length in terms of min-entropy is exactly one bit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا