ترغب بنشر مسار تعليمي؟ اضغط هنا

Bosonic thermoelectric transport and breakdown of universality

517   0   0.0 ( 0 )
 نشر من قبل Adam Rancon
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we compare Bose transport in normal phase atomic gases with its counterpart in Fermi gases, illustrating the non-universality of two dimensional bosonic transport associated with different dissipation mechanisms. Near the superfluid transition temperature $T_c$, a striking similarity between the fermionic and bosonic transport emerges because super-conducting(fluid) fluctuation transport for Fermi gases is dominated by the bosonic, Cooper pair component. As in fluctuation theory, one finds that the Seebeck coefficient changes sign at $T_c$ and the Lorenz number approaches zero at $T_c$. Our findings appear semi-quantitatively consistent with recent Bose gas experiments.



قيم البحث

اقرأ أيضاً

We discuss the temperature-dependent thermoelectric transport properties of semiconductor nanostructures comprising a quantum dot coupled to quantum wires: the thermal dependence of the electrical conductance, thermal conductance, and thermopower. We explore the universality of the thermoelectric properties in the temperature range associated with the Kondo crossover. In this thermal range, general arguments indicate that any equilibrium propertys temperature dependence should be a universal function of the ratio $T^{*}=T/T_{K}$, where $T_{K}$ is the Kondo temperature. Considering the particle-hole symmetric, spin-degenerate Anderson model, the zero-bias electrical conductance has already been shown to map linearly onto a universal conductance through a quantum dot embedded or side-coupled to a quantum wire. Employing rigorous renormalization-group arguments, we calculate universal thermoelectric transport coefficients that allow us to extend this result to the thermopower and the thermal conductance. We present numerical renormalization-group results to illustrate the physics in our findings. Applying the universal thermoelectric coefficients to recent experimental results of the electrical conductance and thermo-voltages versus $V_{gate}$, at different temperatures in the Kondo regime, we calculate all the thermoelectric properties and obtain simple analytical fitting functions that can be used to predict the experimental results of these properties. However, we cannot check all of them, due to the lack of available experimental results over a broad temperature range.
We construct a unified semiclassical theory of charge and spin transport in chaotic ballistic and disordered diffusive mesoscopic systems with spin-orbit interaction. Neglecting dynamic effects of spin-orbit interaction, we reproduce the random matri x theory results that the spin conductance fluctuates universally around zero average. Incorporating these effects in the theory, we show that geometric correlations generate finite average spin conductances, but that they do not affect the charge conductance to leading order. The theory, which is confirmed by numerical transport calculations, allows us to investigate the entire range from the weak to the previously unexplored strong spin-orbit regime, where the spin rotation time is shorter than the momentum relaxation time.
184 - Eric L. Hazlett , Li-Chung Ha , 2013
In condensed matter physics, transport measurements are essential not only for the characterization of materials, but also to discern between quantum phases and identify new ones. The extension of these measurements into atomic quantum gases is emerg ing and will expand the scope of quantum simulation and atomtronics. To push this frontier, we demonstrate an innovative approach to extract transport properties from the time-resolved redistribution of the particles and energy of a trapped atomic gas. Based on the two-dimensional (2D) Bose gas subject to weak three-body recombination we find clear evidence of both conductive and thermoelectric currents. We then identify the contributions to the currents from thermoelectric forces and determine the Seebeck coefficient (a.k.a. thermopower) and Lorenz number, both showing anomalous behavior in the fluctuation and superfluid regimes. Our results call for further exploration of the transport properties, particularly thermoelectric properties, of atomic quantum gases.
Using near-exact numerical simulations we study the propagation of an impurity through a one-dimensional Bose lattice gas for varying bosonic interaction strengths and filling factors at zero temperature. The impurity is coupled to the Bose gas and c onfined to a separate tilted lattice. The precise nature of the transport of the impurity is specific to the excitation spectrum of the Bose gas which allows one to measure properties of the Bose gas non-destructively, in principle, by observing the impurity; here we focus on the spatial and momentum distributions of the impurity as well as its reduced density matrix. For instance we show it is possible to determine whether the Bose gas is commensurately filled as well as the bandwidth and gap in its excitation spectrum. Moreover, we show that the impurity acts as a witness to the cross-over of its environment from the weakly to the strongly interacting regime, i.e., from a superfluid to a Mott insulator or Tonks-Girardeau lattice gas and the effects on the impurity in both of these strongly-interacting regimes are clearly distinguishable. Finally, we find that the spatial coherence of the impurity is related to its propagation through the Bose gas, giving an experimentally controllable example of noise-enhanced quantum transport.
We numerically investigate, using the time evolving block decimation algorithm, the quantum transport of ultra-cold bosonic atoms in a double well optical lattice through slow and periodic modulation of the lattice parameters (intra- and inter-well t unneling, chemical potential, etc.). The transport of atoms does not depend on the rate of change of the parameters (as along as the change is slow) and can distribute atoms in optical lattices at the quantized level without involving external forces. The transport of atoms depends on the atom filling in each double well and the interaction between atoms. In the strongly interacting region, the bosonic atoms share the same transport properties as non-interacting fermions with quantized transport at the half filling and no atom transport at the integer filling. In the weakly interacting region, the number of the transported atoms is proportional to the atom filling. We show the signature of the quantum transport from the momentum distribution of atoms that can measured in the time of flight image. A semiclassical transport model is developed to explain the numerically observed transport of bosonic atoms in the non-interacting and strongly interacting limits. The scheme may serve as an quantized battery for atomtronics applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا