ﻻ يوجد ملخص باللغة العربية
The $gamma$ process in supernova explosions is thought to explain the origin of proton-rich isotopes between Se and Hg, the so-called $p$ nuclei. The majority of the reaction rates for $gamma$ process reaction network studies has to be predicted in Hauser-Feshbach statistical model calculations using global optical potential parameterizations. While the nucleon+nucleus optical potential is fairly known, for the $alpha$+nucleus optical potential several different parameterizations exist and large deviations are found between the predictions calculated using different parameter sets. By the measurement of elastic $alpha$-scattering angular distributions at energies around the Coulomb barrier a comprehensive test for the different global $alpha$+nucleus optical potential parameter sets is provided. Between 20$^{circ}$ and 175$^{circ}$ complete elastic alpha scattering angular distributions were measured on the $^{113}$In textit{p} nucleus with high precision at E$_{c.m.}$ = 15.59 and 18.82 MeV. The elastic scattering cross sections of the $^{113}$In($alpha$,$alpha$)$^{113}$In reaction were measured for the first time at energies close to the astrophysically relevant energy region. The high precision experimental data were used to evaluate the predictions of the recent global and regional $alpha$+nucleus optical potentials. Parameters for a local $alpha$+nucleus optical potential were derived from the measured angular distributions. Predictions for the reaction cross sections of $^{113}$In($alpha,gamma$)$^{117}$Sb and $^{113}$In($alpha$,n)$^{116}$Sb at astrophysically relevant energies were given using the global and local optical potential parameterizations.
New experimental data from the scattering of 6He+208Pb at energies around and below the Coulomb barrier are presented. The yield of breakup products coming from projectile fragmentation is dominated by a strong group of $alpha$ particles. The energ
Elastic scattering cross sections of the $^{89}$Y($alpha$,$alpha$)$^{89}$Y reaction have been measured at energies E$_{c.m.}$ = 15.51 and 18.63 MeV. The high precision data for the semi-magic $N = 50$ nucleus $^{89}$Y are used to derive a local poten
Alpha elastic scattering angular distributions of the 106Cd(alpha,alpha)106Cd reaction were measured at three energies around the Coulomb barrier to provide a sensitive test for the alpha + nucleus optical potential parameter sets. Furthermore, the n
In this work, angular distribution measurements for the elastic channel were performed for the 9Be+12C reaction at the energies ELab=13.0, 14.5, 17.3, 19.0 and 21.0 MeV, near the Coulomb barrier. The data have been analyzed in the framework of the do
The synthesis of heavy, proton rich isotopes in the astrophysical gamma-process proceeds through photodisintegration reactions. For the improved understanding of the process, the rates of the involved nuclear reactions must be known. The reaction 128