ﻻ يوجد ملخص باللغة العربية
The excitation function and momentum distribution of $eta^prime$ mesons have been measured in photon induced reactions on $^{12}{}$C in the energy range of 1250-2600 MeV. The experiment was performed with tagged photon beams from the ELSA electron accelerator using the Crystal Barrel and TAPS detectors. The data are compared to model calculations to extract information on the sign and magnitude of the real part of the $eta^prime$-nucleus potential. Within the model, the comparison indicates an attractive potential of -($37 pm 10(stat)pm10(syst)$) MeV depth at normal nuclear matter density. Since the modulus of this depth is larger than the modulus of the imaginary part of the $eta^prime$-nucleus potential of -($10pm2.5$) MeV, determined by transparency ratio measurements, a search for resolved $eta^prime$-bound states appears promising.
The excitation function and momentum distribution of {eta} mesons have been measured in photoproduction off 93^Nb in the energy range of 1.2-2.9 GeV. The experiment has been performed with the combined Crystal Barrel and MiniTAPS detector system, usi
The photoproduction of $omega$ and $eta^prime$ mesons off carbon and niobium nuclei has been measured as a function of the meson momentum for incident photon energies of 1.2-2.9 GeV at the electron accelerator ELSA. The mesons have been identified vi
Taking advantage of both the low-emittance proton-beam of the Cooler Synchrotron COSY and the high momentum precision of the COSY-11 detector system, the mass distribution of the eta meson was measured with a resolution of 0.33 MeV/c^2 (FWHM), improv
Taking advantage of both the high mass resolution of the COSY-11 detector and the high energy resolution of the low-emittance proton-beam of the Cooler Synchrotron COSY we determine the excitation function for the pp --> pp eta reaction close-to-thre
The production of $eta^prime$ mesons in coincidence with forward-going protons has been studied in photon-induced reactions on $^{12}$C and on a liquid hydrogen (LH$_2$) target for incoming photon energies of 1.3-2.6 GeV at the electron accelerator E