ترغب بنشر مسار تعليمي؟ اضغط هنا

Pre-neutron-emission mass distributions for reaction $^{232}$Th(n, f) up to 60 MeV

109   0   0.0 ( 0 )
 نشر من قبل Xiaojun Sun
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The pre-neutron-emission mass distributions for reaction $^{232}$Th(n, f) up to 60 MeV are systematically studied with an empirical fission potential model. The energy dependences of the peaks and valleys of the pre-neutron-emission mass distributions are described by the exponential expressions based on the newly measured data. The energy dependence of evaporation neutrons before scission, which plays a crucial role for the reasonable description of the mass distribution, is also considered. Both the double-humped and triple-humped shape of the measured pre-neutron-emission mass distributions for reaction $^{232}$Th(n, f) are reasonably well reproduced at incident energies up to 60 MeV. The mass distributions at unmeasured energies and the critical energies at which the humped pre-neutron-emission mass distributions are transformed into each other are also predicted.



قيم البحث

اقرأ أيضاً

The pre-neutron-emission mass distributions for reaction $^{238}$U(n, f) up to 60 MeV are systematically studied with an empirical fission potential model. The energy dependence of the peaks and valleys of the pre-neutron-emission mass distributions is described by an exponential form based on the newly measured data. The energy dependence of evaporation neutrons before scission is also considered, which plays a crucial role for the reasonable description of the mass distributions. The measured data for the pre-neutron-emission mass distributions for reaction $^{238}$U(n, f) are reasonably well reproduced up to 60 MeV. The mass distributions at unmeasured energies are also predicted with this approach.
254 - Xiaojun Sun , Chenggang Yu , 2012
According to the driving potential of a fissile system, we propose a phenomenological fission potential for a description of the pre-neutron emission mass distributions of neutron-induced actinide fission. Based on the nucleus-nucleus potential with the Skyrme energy-density functional, the driving potential of the fissile system is studied considering the deformations of nuclei. The energy dependence of the potential parameters is investigated based on the experimental data for the heights of the peak and valley of the mass distributions. The pre-neutron emission mass distributions for reactions 238U(n, f), 237Np(n, f), 235U(n, f), 232Th(n, f) and 239Pu(n, f) can be reasonably well reproduced. Some predictions for these reactions at unmeasured incident energies are also presented.
The mechanism leading to the formation of the observed products of the collinear cluster tripartition is carried out within the framework of the model based on the dinuclear system concept. The yield of fission products is calculated using the statis tical model based on the driving potentials for the fissionable system. The minima of potential energy of the decaying system correspond to the charge numbers of the products which are produced with large probabilities in the sequential fission (partial case of the collinear cluster tripartition) of the compound nucleus. The realization of this mechanism supposes the asymmetric fission channel as the first stage of sequential mechanism. It is shown that only the use of the driving potential calculated by the binding energies with the shell correction allows us to explain the yield of the true ternary fission products. The theoretical model is applied to research collinear cluster tripartition in the reaction $^{235}$U(n$_{rm th}$,f). Calculations showed that in the first stage of this fission reaction, the isotopes $^{82}$Ge and $^{154}$Nd are formed with relatively large probabilities and in the second stage of sequential fission of the isotope Nd mainly Ni and Ge are formed. This is in agreement with the yield of the isotope $^{68}$Ni which is observed as the product of the collinear cluster tripartition in the experiment.
123 - A. Deltuva , A. C. Fonseca 2014
Microscopic calculations of four-body collisions become very challenging in the energy regime above the threshold for four free particles. The neutron-${}^3$He scattering is an example of such process with elastic, rearrangement, and breakup channels . We aim to calculate observables for elastic and inelastic neutron-${}^3$He reactions up to 30 MeV neutron energy using realistic nuclear force models. We solve the Alt, Grassberger, and Sandhas (AGS) equations for the four-nucleon transition operators in the momentum-space framework. The complex-energy method with special integration weights is applied to deal with the complicated singularities in the kernel of AGS equations. We obtain fully converged results for the differential cross section and neutron analyzing power in the neutron-${}^3$He elastic scattering as well as the total cross sections for inelastic reactions. Several realistic potentials are used, including the one with an explicit $Delta$ isobar excitation. There is reasonable agreement between the theoretical predictions and experimental data for the neutron-${}^3$He scattering in the considered energy regime. The most remarkable disagreements are seen around the minimum of the differential cross section and the extrema of the neutron analyzing power. The breakup cross section increases with energy exceeding rearrangement channels above 23 MeV.
Proton-proton and proton-eta invariant mass distributions and the total cross section for the pp to pp eta reaction have been determined near the threshold at an excess energy of Q=10 MeV. The experiment has been conducted using the COSY-11 detector setup and the cooler synchrotron COSY. The determined invariant mass spectra reveal significant enhancements in the region of low proton-proton relative momenta, similarly as observed previously at higher excess energies of Q=15.5 MeV and Q= 40MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا